

WHITEPAPER

LIGHTWEIGHT

CRYPTOGRAPHY
JANUARY 2021

ALEXANDRA INSTITUTE

2 26

AUTHORS

Kasper Damgård, (previously) Alexandra Institute

Tore Kasper Frederiksen, Alexandra Institute

Published by

THE ALEXANDRA INSTITUTE

January 2021, rev. 2

ALEXANDRA INSTITUTE

3 26

TABLE OF CONTENTS

1 INTRODUCTION ... 5

2 GLOSSARY .. 6

3 CRYPTOGRAPHIC PRIMITIVES .. 7

3.1 BLOCK CIPHERS .. 7

3.1.1 AES .. 8

3.1.2 Speck and Simon ... 9

3.1.3 KATAN and KTANTAN .. 10

3.1.4 PRESENT .. 10

3.2 STREAMING CIPHERS ... 11

3.2.1 Grain .. 11

3.2.2 Salsa20 / ChaCha .. 12

3.2.3 LEX .. 12

3.3 HASH FUNCTIONS ... 12

3.3.1 SHA families .. 13

3.3.2 PHOTON family ... 13

3.3.3 SPONGENT family... 13

3.3.4 QUARK family .. 14

3.4 MACS ... 14

3.4.1 Authenticated Encryption Algorithms ... 14

3.4.2 Chaskey ... 15

3.5 ASYMMETRIC CIPHERS .. 15

3.5.1 ECC.. 16

3.5.2 NTRU ... 16

3.5.3 McEliece... 17

4 SUMMARY.. 18

ALEXANDRA INSTITUTE

4 26

5 CONCLUSION .. 21

6 BIBLIOGRAPHY ... 22

ALEXANDRA INSTITUTE

5 26

1 INTRODUCTION

IoT is rapidly spreading, and with the technology becoming smaller and integrated into

everything, producers often forget about the security aspects. Examples are plentiful;

take for instance credit cards which could be remotely read and copied within minutes as

shown by Kristin Paget, or passport information which could just as easily be stolen

(Greenberg, u.d.). In essence, there is nothing new in the message in this whitepaper: If

you send private data, ensure that the data is encrypted when leaving the device and

that only the intended receiver learns the plaintext data. Also, ensure that the data cannot

be tampered with without the receiver knowing that something bad happened. We call

these properties Confidentiality and Integrity. In this whitepaper we will walk the reader

through what is possible with today’s technology and recent advances in the field of

lightweight cryptography.

Lightweight cryptography is cryptography designed to run on devices or in environments

with very limited resources. This can be both in terms of storage, CPU power, energy

consumption, RAM or chip area. The area of lightweight cryptography is focused primarily

on microprocessors (8 to 64 bit) and hardware implementations or so-called Application-

Specific Integrated Services (ASICs) of crypto primitives. This means it covers anything

from programmable Arduinos to RFID tags.

Because of the many variables, it is impossible to say if there is a “best” cipher, especially

if we also consider the variables for the security guarantees. In essence, the best

selection is made by carefully considering all variables in the individual application. We

will still include numbers to give an idea of a comparison, but often those numbers are

not entirely comparable as it is difficult to know if certain elements such as the key

schedule or decryption part of an algorithm is included in the algorithm size. Also,

comparing performance numbers is not going to be fair since implementations are done

on different architectures, most likely picked to give the most favourable benchmarks for

each algorithm. In other words: take numbers with a grain of salt, and confer with experts

if you have a specific application setup that needs to utilize a lightweight primitive.

The rest of the whitepaper is structured as follows: First a glossary of terms which may

not be well-known. Then we go through the primitives starting with block ciphers, then

streaming ciphers followed by hash functions and MACs and finally ending with

asymmetric ciphers. We then sum it all up in a large table containing key numbers,

followed by our conclusion.

ALEXANDRA INSTITUTE

6 26

2 GLOSSARY

This whitepaper uses a few abbreviations which are nice to know in advance.

• ASIC: Application-Specific Integrated Service. Hardware circuit hardwired to do a

single task.

• Clock cycle (clk): Amount defining how quickly a certain operation takes to process.

• CPU: Central Processing Unit. Device which processes data at a certain speed.

• Cipher: An algorithm which encrypts or decrypts data.

• FPGA: Field-Programmable Gate Array. Modern hardware circuit which can be

programmed after shipping to the customer.

• GE: Gate Equivalent. Notation used for describing the physical size needed for the

program to be implemented in hardware. 1 GE equals 1 NAND gate. To get a sense

of what is small and what is big GE numbers, early ASICs contained around 5000 GE,

while modern ASICs or FPGA’s contains up to several millions.

• RAM: Random Access Memory. Used in computers for storing temporary data.

• ROM: Read-Only Memory. Contains data which cannot be changed without great

difficulty, or not at all.

• Round: Within this whitepaper, a round is considered to be defined as part of an

algorithm which loops a certain code segment multiple times. Each loop is a different

round, and often a cipher is proven insecure up to a certain number of rounds (e.g. 10

out of 12 have been broken).

• RSA: Standard public key cipher used in many products all over the world.

• SRAM: Static RAM. Makes data stored accessible faster.

• Throughput: Measurement of how fast an algorithm can produce the intended output.

All measurements within this whitepaper are given in kilobit per second (kbps).

ALEXANDRA INSTITUTE

7 26

3 CRYPTOGRAPHIC
PRIMITIVES

A cryptographic primitive is a basic element within the field of cryptography which is

combined with other elements to construct a protocol which in short enables either

confidentiality or integrity (or both). In this whitepaper we will cover only the primitives

themselves and compare them with each other. We will not go into the more advanced

protocol level.

There are quite a lot of ciphers within the field of lightweight cryptography, and a large

amount of these are surveyed by the university of Luxembourg (Biryukov & Perrin, State

of the Art in Lightweight Symmetric Cryptography, 2017) and (University of Luxembourg,

2017), where detailed comparisons also can be found. Those comparisons are done

using the open source FELICS (Dinu, et al., 2015) – Fair Evaluation of Lightweight

Cryptographic Systems tool developed by the University of Luxembourg.

The tool compares 20 different ciphers on the parameters Code size, RAM usage and

time measured in numbers of CPU cycles per operation. Note that hardware

implementations and GE sizes are not included. They then provide a score or Figure of

Merit (FoM), which gives an impression on the best cipher. The problem for non-experts

is that all types of ciphers are gathered in one big table, and comparing a block cipher to

a MAC doesn’t really make sense as the purpose of each type is not at all the same. We

will in the following pick out the most suitable if such exist and possibly runner ups in

each category based on surveys done on which lightweight primitives are available. Note

that the field moves fast, and is broad, so it is entirely possible that new and better ciphers

arrive or that we missed a cipher. We also note that the list of ciphers is far from

exhaustive, both in regard to theory and standardization. We direct the interested reader

to the NIST lightweight standardization work1 and the ISO/IEC series 29192 for more info

and other possible crypto schemes.

3.1 BLOCK CIPHERS

Block ciphers operate on plaintext in blocks of a certain size. They transform (encrypt or

decrypt) a block of data and outputs the transformed result. If the input data is longer

than the block size, a mode of operation is needed which tells the block cipher how to go

1 https://csrc.nist.gov/Projects/lightweight-cryptography

ALEXANDRA INSTITUTE

8 26

about transforming multiple blocks in a secure manner. These modes of operation are

outside the scope of this whitepaper.

3.1.1 AES

Probably the most well-known block cipher is the Advanced Encryption Standard (AES).

The technology behind the AES is the Rijndael cipher. AES was standardised in 1998 by

NIST (Federal Information Processing Standards Publication, 2001) and in 2005 by ISO

(International Organization for Standardization, 2005), and to this date it is still considered

secure. AES comes in three variants called AES-128, AES-192 and AES-256. They all

work on a block size of 128 bits, and the number appended to each variant corresponds

to the key size used which also has an impact on the number of rounds it takes to

complete an AES operation. AES has reached enormous acceptance, and for this reason

and the security of the cipher, it is the NIST recommended cipher to use for lightweight

cryptography (McKay, Bassham, Turan, & Mouha, 2017). AES has been studied for many

years, which has led to advances in both reducing the code size and the physical size

and increased the throughput obtained in both hardware and software implementations.

The most compact hardware implementation known to us was made by Mathew Sanu et

al. (Sanu, et al., 2015) and fits within 2090 GE. Mathew Sany et al. also obtain the lowest

energy consumption in throughput per Watt compared to all other implementations known

to the authors at that time. Saving on energy consumption is important if the device is

very constrained in battery size or only has a very limited power source (such as a smart

card). We refer the reader to the paper for detailed numbers.

If RAM is limited to 64 bytes or ROM is limited to 512 bytes, it is not yet feasible to

implement the full AES (McKay, Bassham, Turan, & Mouha, 2017), and other ciphers

should be considered. A paper by Matsui and Murakami (Matsui & Murakami, 2013),

shows that the full AES requires 128 bytes of RAM and 970 bytes of ROM. For encryption

only, one can make do with 128 bytes of RAM and 486 bytes of ROM. The more space

one has for code, the faster the implementation can get (up to a certain point).

AES is susceptible to a range of side-channel attacks. A side-channel attack is e.g.

measuring the power consumption spikes or sound of the CPU. They all have in common

that instruments for measuring must be physically present during the attack. These are

hard to secure against because of the nature of the design of AES. A lot of effort has

been put into this (Moradi, Poschmann, Ling, Paar, & Wang, 2011), but we are aware of

the fact that no implementations are entirely leakage free. That being said, the effort,

time, requirement of external instruments being present and insecurity in the leaks will

most likely deter attackers – especially small IoT devices which in themselves might not

reveal a critical mass of data if hacked somehow.

We recommend using AES where applicable due to the thorough reviews it has received

in the past 20 years. No efficient attacks have been found, and it is expected that AES

will survive many years from now.

ALEXANDRA INSTITUTE

9 26

3.1.2 SPECK AND SIMON

The block ciphers Speck and Simon (Beaulieu R. , et al., 2013/2014) have been

developed by NSA to cover the area of general-purpose block ciphers which are efficient

in both hardware and software and in any constrained environment. Other ciphers up

until the release of Speck and Simon were specialized for a certain systems architecture.

Both Simon and Speck are highly efficient in both hardware and software settings. This

can be important for some settings where a mix is required.

Simon is hardware-oriented and the best hardware choice to our knowledge if resources

are very limited in the hardware setting. If the block size is kept at 64 bits, the GE area

can be as low as 1000 GE while still maintaining a 128-bit key. Compared to AES-128,

which requires 2090 GE and operates on 128-bit blocks, Simon requires only 1317 GE.

The throughput is worse than AES, though. The NSA reports the numbers 22,9 kbps for

Simon whereas AES manages 56,6 kbps. These numbers are based on an ASIC

implementation.

Speck is software-oriented and the best software choice to our knowledge if resources

are limited in terms of code size or RAM usage. Speck, to compare with AES-128,

requires only 396 bytes whereas AES requires 943 bytes. The throughput is very good

at 768 kbps for Speck where AES manages 445 kbps (Osvik, Bos, Stefan, & Canright,

2010). These numbers are based on a software implementation on an 8-bit

microcontroller.

No security analysis was presented along with the protocols themselves, making them

stand out in the community. Later, these analyses were made by Farzaneh Abed et al.

(Abed, List, Lucks, & Wenzel, 2013) and a pretty large number of others, none of which

could prove the ciphers insecure.

Side-channel attacks are known for Speck and Simon but can be mitigated to some

extent (Beaulieu R. , et al., 2015). This is work in progress, and if your application should

be resistant to those types of attacks, we suggest digging deeper in the research as it is

likely that new work has been done.

Even though scores of papers have been written looking into cryptanalysis of Speck and

Simon, in large due to their origin of the NSA, no significant attacks have been found.

However, it should be noted that Simon and Speck were rejected from ISO/IEC 29192-2

(International Organization for Standardization, 2019) due to lack of justification of choice

of internal random values. Furthermore, neither Speck nor Simon has been accepted as

candidates for the NIST standardization for lightweight cryptography2. For these reasons,

we recommend caution if deciding to use Speck or Simon although we do note that Speck

has been ISO standardized for RFID usage (International Organization for

Standardization, 2018).

2 https://csrc.nist.gov/Projects/lightweight-cryptography

ALEXANDRA INSTITUTE

10 26

3.1.3 KATAN AND KTANTAN

KATAN and KTANTAN (De Canniere, Dunkelman, & Knežević, KATAN and KTANTAN—

a family of small and efficient hardware-oriented block ciphers, 2009) are a family of very

hardware-oriented block ciphers. The difference between KATAN and KTANTAN is that

for KTANTAN, the key is hardcoded into the circuit. This saves space but could be

considered less secure depending on the application. This results in the smallest block

cipher with respect to GE area that we are aware of. KTANTAN32 presents numbers of

462 GE but can only handle a block size of 32 bits. For KTANTAN64, which is the largest

block size available, the area grows to 688 GE. For KATAN where the key scheduling is

not taken out of the equation, KATAN32 requires 802 GE and the larger KATAN64 takes

up 1054 GE. Performance-wise, KATAN and KTANTAN are equal as there is only a

difference in the key handling. For the 32-, 48- and 64-bit block size variants, the speeds

are 12.5, 18.8 and 25.1 kb per second respectively. Thus, if the use-case is right, the

KATAN or KTANTAN cipher might be the right one to pick as they are faster and

potentially smaller than the Simon cipher (depending on how the key is stored). If larger

block sizes are required, or the application should run in software, then neither KATAN

nor KTANTAN are correct choices. That being said, there do exist several attacks but

none that completely breaks them, assuming reasonable usage (Bogdanov &

Rechberger, A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis of the Lightweight

Block Cipher KTANTAN, 2010).

Finally, it should be noted that these ciphers are neither standardized by ISO nor part of

the NIST standardization process for lightweight cryptography.

3.1.4 PRESENT

PRESENT (Bogdanov, et al., 2007) is an ISO standardized block cipher (International

Organization for Standardization, 2019), constructed specifically for the setting of

lightweight cryptography. It was developed in 2007 by a group of researchers from Ruhr-

University Bochum in Germany, DTU in Denmark and France Telecom. The cipher was

designed with security and hardware efficiency in mind so as to complement AES in

hardware constrained environments with less stringent security requirements. PRESENT

works on 64-bit blocks and has 31 rounds. It supports both 80-bit and 128-bit keys. The

throughput is impressive, at 200 Kbps on a 100 KHz CPU, although the GE is larger than

the lightweight competitors of Simon and KATAN, at 1570 for the 80-bit variant. If the

use-case is applicable with 64-bit blocks and speed is more important than the GE, or

that standardization is a priority, then PRESENT is the correct choice.

Finally, we do note that PRESENT is not a candidate for NIST standardization of

lightweight cryptography but has been standardized by ISO (International Organization

for Standardization, 2019).

ALEXANDRA INSTITUTE

11 26

3.2 STREAMING CIPHERS

Opposite block ciphers which can only operate on a certain size of bytes at a time,

streaming ciphers operate on streams of data. That is, they essentially use a key and

what is called an Initialization Vector (IV) to produce a stream of key data which can then

be used to encrypt or decrypt data. A well-known cipher is the RC4, but this has long

been known to be insecure. Another similarly broken cipher is A5/1 used in the GSM

phone network. It is sadly still used even though it has been proven extremely insecure.

We mention these to ensure that the reader does not employ these in production.

In general, any block cipher can be turned into a stream cipher by utilizing a mode of

operation such as CTR (Counter mode of operation), which makes it possible to work on

streams of data. Since AES is the most common symmetric block cipher, we here

mention it as a possible stream cipher in the variant of AES-CTR; that is, AES in counter

mode of operation. If AES is usable, we recommend using AES-CTR over other

mentioned ciphers. However, if the environment is too constrained, consider one of the

ciphers mentioned below, or look into using one of the previously mentioned block ciphers

in CTR mode.

We note that extensive work has been carried out by ECRYPT through the eStream

project (ECRYPT, n.d.) to promote efficient streaming ciphers, which ended with a list of

recommendations for both software and hardware stream ciphers.

3.2.1 GRAIN

Grain (Hell, Johansson, & Meier, 2007) comes in two versions. One that uses an 80-bit

key and one with a 128-bit key. It is a hardware-oriented stream cipher, and the 80-bit

version only uses 1294 GE area. Different versions are suggested, sacrificing the GE’s

to obtain greater throughput. With a larger area also comes the added advantage of lower

power consumption per processed byte. The most secure and fastest Grain version

requires 4617 GE, which is larger than the smallest AES counterpart. Fortunately, Grain

is much faster and more energy-efficient.

It is also worth noting that Grain has shown to be one of the most efficient eStream

ciphers (Good & Benaissa, 2008), with Trivium being the only serious contender.

However, we leave Trivium (De Canniere & Preneel, TRIVIUM specifications, 2005) out

of our recommendations since its authors themselves state that Trivium should not be

used because of possible attacks on the scheme.

Finally, we also note that Grain has made it to round 2 of the NIST lightweight

cryptography standardization process3, although it is not ISO standardized.

3 https://csrc.nist.gov/Projects/lightweight-cryptography

ALEXANDRA INSTITUTE

12 26

3.2.2 SALSA20 / CHACHA

Salsa20 (Bernstein D. , 2008) and the its improved ChaCha (Bernstein D. , 2008) variant

are both software-oriented stream ciphers and should be considered when speed and

code size are important. Salsa20 can be implemented in 1452 bytes and has a throughput

which is approximately 44% faster than the AES-CTR (Eisenbarth & Kumar, 2007),

although other sources state numbers more than 5 times as fast as AES. The data to

operate on should be of a considerable size though, if one wants to avoid wasting a lot

of bytes. The minimum state size is 512 bits. Salsa20 also requires 280 bytes of SRAM

to function.

Although neither Salsa20 nor ChaCha are candidates for the NIST lightweight

cryptography standardization, or ISO standardized, we note that Salsa20 is part of the

eStream portfolio (ECRYPT, n.d.) and ChaCha has been standardized by the Internet

Engineering Task Force (Y. Nir, Dell, A. Langley, Google, 2018).

3.2.3 LEX

Leak Extraction (LEX) (Biryukov, A New 128-bit Key Stream Cipher LEX, 2005) builds on

AES and utilizes a property of any block cipher, meaning the construction should be

transferable to other block ciphers than AES. The authors claim that LEX runs 2.5 times

faster in both hardware and software than the AES counterpart, and the survey by

Eisenbarth and Kumar (Eisenbarth & Kumar, 2007) states that implementation can be

done using 1598 bytes. It does require a significant amount of SRAM, though: 304 bytes.

LEX has a throughput of approximately double that of Salsa20 and uses block sizes of

320 bytes. Thus, if no bytes should go to waste, a significant data amount is required.

LEX is not a NIST lightweight cryptography standardization candidate, nor has it been

standardized by ISO. It was, however, a candidate in the eStream effort but did not end

up as part of its portfolio due to an attack allowing an attacker to recover the secret key

after observing 240 bytes of encrypted data (Dunkelman & Keller, 2013).

3.3 HASH FUNCTIONS

A hash function is also called a one-way function. One-way meaning that it is easy to go

one way (i.e. from data to the hash value) but hard to obtain the pre-image given a hash

value (e.g. the original data from the hash value). A hash value is a small number of bytes

which can be considered unique based on the input data. Another important feature of a

hash function is collision resistance. A hash function is considered collision resistant if it

is hard to find two different data inputs yielding the same hash value.

The size of the hash value is also known as the output size and is measured in bits.

ALEXANDRA INSTITUTE

13 26

3.3.1 SHA FAMILIES

The SHA-1, SHA-2 and SHA-3 families are likely the best-known hash functions as they

are the standard used for just about any use-case. They are standardized by both NIST

(Federal Information Processing Standards Publication, 2015) and ISO (International

Organization for Standardization, 2018). However, they are not the smallest, neither in

terms of code size, nor physical GE size. We do not recommend using the SHA-1 family

if it can be avoided, as it is no longer considered secure (McKay, Bassham, Turan, &

Mouha, 2017). The remaining hash functions are thoroughly tested and should be used

were applicable.

However, in constrained environments, it might not be possible to utilize the SHA families,

in which case alternatives can be used. NIST (McKay, Bassham, Turan, & Mouha, 2017)

states that it is impossible to implement the SHA-2 and SHA-3 families within 64 bytes of

RAM. Still, it might not be very farfetched to use SHA-3 in some constrained

environments. SHA-3 is a subset of the KACCAK family (Bertoni, Daemen, Peeters, &

Van Assche, 2009) and a construction of the smallest KECCAK hash function primitive

takes up only approximately 1300 GE with a throughput of 18.6 Kb per second at 1MHz.

However, a newer study of the family (Pessl & Hutter, 2013) presents results of an

incredible 4000 Kb per second with an area requirement of just 4900 GE using parallel

execution. Matsui and Murakami (Matsui & Murakami, 2013) found that KECCAK can be

implemented in software which requires at least 512 bytes of RAM and 453 bytes of ROM.

3.3.2 PHOTON FAMILY

The PHOTON group of hash functions (Gio, Peyrin, & Poschmann, 2011) was developed

to allow RFID tags the possibility to use the hash function primitive. In other words, this

is designed for hardware. They were ISO standardized in 2016 (International

Organization for Standardization, 2016). As for the SHA families, they come in variants:

PHOTON-80, PHOTON-128, PHOTON-160, PHOTON-224 and PHOTON-256. The

number corresponds to the output size in bits. The GE areas and other technical details

are noted in the paper by Jian et al. (Gio, Peyrin, & Poschmann, 2011), but it can be as

small as 865 GE for PHOTON-80 and 2177 GE for PHOTON-256. PHOTON has a decent

speed as well and should be suitable for cases where the SHA families are not applicable.

They claim that power consumption should be quite acceptable but have only run

simulations which therefore might not be entirely accurate.

Furthermore, PHOTON has been standardized for lightweight cryptography by ISO

(International Organization for Standardization, 2016) and a variant (PHOTON-Beetle)

has made it to round 2 of the NIST lightweight cryptography standardization process.

3.3.3 SPONGENT FAMILY

As with PHOTON, SPONGENT (Bogdanov, et al., 2011) is a hardware-oriented hash

function family which comes in the variants of output size 88-, 128-, 160-, 224- and 256-

bits. SPONGENT is also ISO standardized (International Organization for

ALEXANDRA INSTITUTE

14 26

Standardization, 2016) and beats PHOTON in GE area by a small margin, ranking from

738 GE for SPONGENT-88 up to 1950 GE for SPONGENT-256. Power consumption

numbers are given, but as for PHOTON, they are only simulated numbers. As for

throughput, SPONGENT is not doing as well as PHOTON, meaning the GE area

requirement should weigh higher than speed. Most often, it seems PHOTON beats

SPONGENT.

3.3.4 QUARK FAMILY

The QUARK (Aumasson, Henzen, & Naya-Plasencia, 2010) family comes in three

variants: U, D and S where U corresponds to 136 output bits, D to 176 output bits and S

to 256 output bits. The area requirements are slightly higher than both PHOTON and

SPONGENT at 1379 GE for U-QUARK and 2296 GE for the S-QUARK. The throughput,

however, is quite acceptable with QUARK being the fastest but at the sacrifice of a

greater GE area. Thus, any of the mentioned hash families are usable, and the right one

depends on context and application.

We note that QUARK is not a NIST lightweight cryptography standardization candidate,

nor has it been standardized by ISO.

3.4 MACS

A MAC is short for Message Authentication Code and will in itself not secure the

confidentiality of the data it operates on. Instead, it is used for ensuring integrity of the

data in the sense that the receiver can compute the MAC on the received data, and if it

matches the MAC attached to the data, you have a certain guarantee that the data has

not been manipulated during transfer. This requires of course that the key used for the

MAC is kept confidential from the attacker as the attacker could otherwise just replace

both data and MAC to match. Normally, one would use a MAC in conjunction with a

scheme that keeps data confidential or use one of the so-called authenticated encryption

algorithms which handles both confidentiality and integrity.

If the use-case enables the use of standard MAC schemes such as HMAC (Krawczyk,

Canetti, & Bellare, 1997) or AES-CMAC (Song, Poovendran, Lee, & Iwata, 2006), those

schemes should be used due to the security of the schemes and thoroughly tested

implementations.

3.4.1 AUTHENTICATED ENCRYPTION ALGORITHMS

GCM (McGrew & Viega, 2004) and CCM (Dworkin, 2007) are modes of operation used

on any block cipher to simultaneously provide confidentiality and integrity of the data.

They are not the only modes capable of doing so but the only ones recommended by

NIST (McKay, Bassham, Turan, & Mouha, 2017). More lightweight versions also exist

such as JAMBU (Wu & Huang, 2016) or Hummingbird-2 (Engels, Saarinen, Schweitzer,

& Smith, 2011). However, the reason none of these are recommended is that they have

ALEXANDRA INSTITUTE

15 26

not yet been analysed to full extent, and the security claims of the authors are not always

correct (as proven by Payrin et al. (Payrin, Sim, Wang, & Zhang, 2015) in the JAMBU

case and by Kai et al. (Zhang, Ding, & Guan, 2012) in the Hummingbird-2 case). There

may still be reason to consider these, as the cryptanalysis has not entirely broken the

schemes but instead reduces the security margins significantly. Implementations of

Hummingbird-2 can be done with approximately 2000 GE, making it worth considering if

space is very critical.

GCM or CCM are commonly available options in most implementations of AES but could

be applied to any of the lightweight block ciphers previously mentioned in this whitepaper.

If you think you need to implement it yourself, consult with an expert before doing so, as

implementation details are of immense importance within security.

3.4.2 CHASKEY

Chaskey (Mouha N. , 2017) is a simple clean MAC variant with a very efficient

implementation and code size. It is intended to perform exceptionally well on software for

a wide range of 8-bit to 32-bit microcontrollers which are considered constrained

environments.

The code is open source and available free of charge. Several cryptanalysis attacks have

been made but none succeed in completely breaking Chaskey. We suggest using

Chaskey when a MAC is needed in constrained environments.

Even though Chaskey is optimized for software, extremely efficient hardware

implementations have been made by e.g. (Lan, Zhou, & Liu, 2016), requiring

approximately 3334 GEs and, using a clock frequency of 1MHz, 33 clock cycles to

complete a single operation on 128-bit input. This corresponds to a throughput of 3787

Kb per second.

The downside of Chaskey is a worse security guarantee. An attacker can break Chaskey

with time complexity of approximately 2128/D if he obtains D plaintext/ciphertext pairs. If

one is worried about the small security margin (7 out of 8 rounds have been broken, and

even though this sounds bad, it actually doesn’t mean that it’s just about to fall apart), a

proposal has been made to increase the number of rounds to 12 or 16 with a relatively

small cost to the implementation size and efficiency (Mouha N. , 2015) which would

increase the security margin.

When it comes to standardization, Chaskey has been ISO standardized as a lightweight

MAC (International Organization for Standardization, 2019).

3.5 ASYMMETRIC CIPHERS

Asymmetric ciphers are also known as public key cryptography. They differ from the

previously mentioned ciphers in that the key used to encrypt and decrypt data is not the

same, hence the asymmetry. Often, asymmetric ciphers release a public key to the public

(thus, not a secret value) which can be used for encrypting data. Only the owner of the

ALEXANDRA INSTITUTE

16 26

private key can then decrypt the data again. This can be helpful in certain scenarios

where you don’t want several devices to share a key, since a successful attack on a

single key will compromise the entire system. Giving each device their own key can also

result in problems since keeping track of which device uses which symmetric key is a

hassle. It could also be that you simply don’t know who will send you data in advance,

making it impossible to share a key in advance.

The problem is that asymmetric ciphers are orders of magnitude slower than symmetric

ciphers, making them less appealing in a lightweight cryptography scenario. Still, there

have been made advances in recent years, proving that it is indeed possible to utilize

asymmetric ciphers in constrained environments.

3.5.1 ECC

Elliptic curve cryptography has been the target of many researchers in search of an

asymmetric cipher which could be used in constrained environments. It was actually

proven already 10 years ago that ECC could fit onto an RFID chip (Hein, Wolkerstorfer,

& Felber, 2008), where the implementation took up 15,000 GE. More recent work has

reduced this number and increased the speed. Among these, Kurahatti (Kurahatti, 2018)

managed to reduce the size to 8,580 GE and needs only 381 W at 35.8 kHz to run. This

means that chips such as the RFID tag can make use of asymmetric encryption, which

in some applications is critical to security and where symmetric cryptography is not

applicable.

3.5.2 NTRU

NTRU (NTRUOpenSourceProject, u.d.) is a lattice-based public key approach which has

been accepted by the IEEE standardization as IEEE Standard 1363.1-2008. NTRU exists

in two main variants: NTRUEncrypt which handles encryption and decryption and

NTRUSign which handles digital signatures. The code can be compressed to around 8

kb, making it a contender for software-based asymmetric cryptography. It also has the

added advantage of being based on security assumptions which do not break if the

attacker has a quantum computer, as would be the case for e.g. RSA or ECC. NTRUSign

for commercial use requires a license, but NTRUEncrypt can be used free of charge.

NTRU claims to be the fastest public key crypto, beating both RSA and ECC.

NTRU has also been investigated for use in somewhat lightweight cryptography, namely

the FPGAs. A paper by Kamal and Youssef (Kamal & Youssef, 2009) shows an

implementation on an FPGA and achieves speeds of more than 130 Mb/s for both

encryption and decryption. Unfortunately, the hardware area used is expressed in slices,

not GEs, making comparisons difficult since the definition of a slice varies with the

hardware.

A great downside to NTRUEncrypt is that it has been shown to have several

vulnerabilities for certain, although unusual, parameter choices (Albrecht, Bai, & Ducas,

ALEXANDRA INSTITUTE

17 26

2016; Kirchner & Fouque, 2016). Furthermore, the standard signature scheme,

NTRUSign, has been all but completely broken (Ducas & Nguyen, 2012).

3.5.3 MCELIECE

The McEliece family of schemes had its inception in 1978 (McEliece, 1978) and is based

on the hardness of general decoding of a certain type of error correction code. The

scheme, and a follow-up work by Neiderreiter (Niederreiter, 1986), didn’t really gain much

traction in the cryptographic community until quantum attacks on more popular schemes,

such as RSA and ECC, were introduced (Shor, 1994). McEliece is not vulnerable to these

types of attack and thus regained some research popularity resulting in a digital signature

variant (Courtois, Finiasz, & Sendrier, 2001) along with further optimizations (Misoczki,

Tillich, Sendrier, & Barreto, 2013). That, along with the fact that encryption and decryption

can be computed using simple bit manipulations on short words, has made the McEliece

family a serious contender for public key cryptography on constrained devices.

The main negative aspect of this family is that it requires quite large public keys (around

600 bytes using the most recent optimizations (Misoczki, Tillich, Sendrier, & Barreto,

2013)) and that, without careful implementation, is vulnerable to timing-based side-

channel attacks.

An implementation of the encryption version of the scheme (Misoczki, Tillich, Sendrier, &

Barreto, 2013) has been investigated in a somewhat lightweight setting, that is using

FPGAs (Maurich & Güneysu, 2014). The authors report speeds of about 2.2 Mb/s for

encryption and 0.36 Mb/s for decryption, however the number of slices needed are over

an order of magnitude less than that required by NTRU.

Finally, we note that a version of McEliece has made it to round 3 of the NIST post-

quantum cryptography standardization process4.

4 https://classic.mceliece.org/nist.html

ALEXANDRA INSTITUTE

18 26

4 SUMMARY

In the table below, we present an overview of our findings. An entry written as “-“ denotes

that the information was either not applicable or not obtainable. Note that throughput

should not be taken as a fair number to compare with the other primitives. Most software

throughput numbers are taken from FELICS (University of Luxembourg, 2017) and more

precisely using the AVR architecture in scenario 2 – III: best running time for encrypting

128 bits using the CTR mode of operation. Throughput is measured in kilobit per second

and always assumes a CPU of 1 MHz (numbers found using a different CPU speed have

been scaled, which may not be entirely accurate as throughput is not exactly linear in

CPU speed). Power usage numbers are not easy to find and depends heavily on CPU

and hardware used. Those listed are based on the papers investigated and should be

used indicatively only. Power numbers without a (*) are for CPU’s running at 100 KHz.

For (*) numbers, consult the section describing the primitive.

Not all variants of the primitives are mentioned. Most have multiple different settings,

which yields different numbers. Where more than one variant is listed, we always list the

minimum size as the first one and the maximum throughput as the other.

Note also that the hardware technologies used may differ from primitive to primitive (some

use 0,13 m technology and others 0,18 m). We do not mention this in the table. This

also makes comparisons slightly skewed.

Cryptographic

primitive

Ware

orientation

Block size

/Key size

Gate

equiv.

(GE)

Code

size

(bytes)

RAM

(bytes)

Throughput

(kbps)

Power

usage

Block ciphers

AES Software 128/128 2090 943 79 S: 37,3

(H: 566)

3,7 A

SIMON Hardware 48/96 763 196 55 S: 36,8

H: 150

-

SIMON Hardware 128/128 1317 732 55 S: 21,37

H: 229

-

SPECK Software 48/96 884 134 52 S: 59 -

ALEXANDRA INSTITUTE

19 26

Cryptographic

primitive

Ware

orientation

Block size

/Key size

Gate

equiv.

(GE)

Code

size

(bytes)

RAM

(bytes)

Throughput

(kbps)

Power

usage

H: 120

SPECK Software 128/128 1396 396 52 S: 48

H: 121

-

KATAN64 Hardware 64/80 1054 272 18 25,1 555 nW

KTANTAN64 Hardware 64/80 688 - 18 25,1 555 nW

PRESENT Hardware 64/80 1570 - - 2000 5 W

Grain80 Hardware Stream/80 1294 - - 10 1,09 W

Grain80x16 Hardware Stream/80 3239 - - 160 2 W

Grain128 Hardware Stream/128 1857 - - 10 1,6 W

Grain128x32 Hardware Stream/128 4617 - - 320 3,4 W

Salsa20 Software Stream(min.

512)/128

- 1452 280 214 -

LEX Software Stream(min.

320)/128

- 1598 304 93 -

Hash functions

KECCAK

(SHA-3)

Software/

Hardware

64 1300 453 512 18,6 -

KECCAK

(SHA-3) - parallel

Software/

Hardware

64 4900 - - 400 27,6 W

PHOTON-80 Hardware 80 865 - - 28,2 2 W

PHOTON-256 Hardware 256 4362 - - 205 8,3 W

SPONGENT-88 Hardware 88 738 - - 8,1 1,9 W

SPONGENT-256 Hardware 256 3281 - - 114,3 7,5 W

ALEXANDRA INSTITUTE

20 26

Cryptographic

primitive

Ware

orientation

Block size

/Key size

Gate

equiv.

(GE)

Code

size

(bytes)

RAM

(bytes)

Throughput

(kbps)

Power

usage

U-QUARK Hardware 64 1379 - - 14,7 2,44 W

S-QUARKx16 Hardware 256 4640 - - 500 8,39 W

MACs

Chaskey Hardware 128/128 3334 624 80 S: 91,1

H: 3787

Asymmetric

ciphers

ECC Software N/A 8580 - - N/A 381* W

NTRU Software N/A - 8000 - 130.000

(FPGA

hardware)

McEliece Software N/A - - - 2180/358

(FPGA

hardware)

Table 1: Overview of all primitives and the key numbers found.

ALEXANDRA INSTITUTE

21 26

5 CONCLUSION

We investigated a large number of lightweight ciphers for use in constrained

environments. Good progress has been made towards integrating cryptographic

primitives into even the smallest hardware, making it possible to secure your data no

matter how small the devices your application uses are. There is a large discrepancy

between hardware and software ciphers in terms of performance and size, so choose

carefully and consult with an expert if you’re the least bit in doubt. Cryptography should

be used with care, and even though a certain cipher is suggested in this whitepaper, it

might be virtually useless if it is used in a wrong way or parameters are set incorrectly.

In general, we suggest using AES when applicable for keeping data confidential if your

application is able to utilize symmetric ciphers. If integrity is also required, we recommend

using AES in either GCM or CCM mode. Even though it may be a slower alternative, AES

implementations have a larger probability of not being flawed since they have been under

scrutiny many times over. Due to similar reasoning for choice of hash function, we

recommend using SHA-3 if possible.

ALEXANDRA INSTITUTE

22 26

6 BIBLIOGRAPHY

Greenberg, A. (n.d.). (Forbes) Retrieved January 2018, from

https://www.forbes.com/sites/andygreenberg/2012/01/30/hackers-demo-shows-how-easily-credit-

cards-can-be-read-through-clothes-and-wallets/#2062d04f78a6

Biryukov, A., & Perrin, L. P. (2017). State of the Art in Lightweight Symmetric Cryptography.

University of Luxembourg. (2017, March 15). FELICS. Retrieved from

https://www.cryptolux.org/index.php/FELICS

Dinu, D., Biryukov, A., Grossschädl, J., Khovratovich, D., Le Corre, Y., & Perrin, L. (2015). FELICS

– Fair Evaluation of Lightweight Cryptographic Systems . NIST Workshop on Lightweight

Cryptography, 128.

Federal Information Processing Standards Publication. (2001). FIPS PUB 197, Specification for the

Advanced Encryption Standard (AES). Gaithersburg, MD, USA.: National Institute of Standards and

Technology.

International Organization for Standardization. (2005). ISO/IEC 18033-3:2005. Geneva,

Switzerland.

McKay, K. A., Bassham, L., Turan, M. S., & Mouha, N. (2017, March). Report on Lightweight

Cryptography. Retrieved from https://doi.org/10.6028/NIST.IR.8114

Sanu, M., Satpathy, S., Suresh, V., Anders, M., Kaul, H., Agarwal, A., . . . Krishnamurthy, R.

(2015). 340 mV–1.1 V, 289 Gbps/W, 2090-gate nanoAES hardware accelerator with area-

optimized encrypt/decrypt GF (2 4) 2 polynomials in 22 nm tri-gate CMOS. IEEE Journal of Solid-

State Circuits, 50(4), pp. 1048-1058.

Matsui, M., & Murakami, Y. (2013). Minimalism of software implementation. International Workshop

on Fast Software Encryption, (pp. 393-409). Berlin.

Moradi, A., Poschmann, A., Ling, S., Paar, C., & Wang, H. (2011). Pushing the Limits: A Very

Compact and a Threshold Implementation of AES. Advances in Cryptology – EUROCRYPT 2011.

Springer.

Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., & Wingers, L. (2013/2014). The

SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint Archive.

Osvik, D. A., Bos, J. W., Stefan, D., & Canright, D. (2010). Fast Software AES Encryption. FSE, 10,

pp. 75-93.

Abed, F., List, E., Lucks, S., & Wenzel, J. (2013). Cryptanalysis of the Speck Family of Block

Ciphers. IACR Cryptology ePrint Archive.

ALEXANDRA INSTITUTE

23 26

Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., & Wingers, L. (2015). SIMON

and SPECK: Block Ciphers for the Internet of Things. IACR Cryptology ePrint Archive 2015.

International Organization for Standardization. (2019). ISO/IEC 29192-2:2019. Geneva,

Switzerland.

International Organization for Standardization. (2018). ISO/IEC 29167-21:2018. Geneva,

Switzerland.

De Canniere, C., Dunkelman, O., & Knežević, M. (2009). KATAN and KTANTAN—a family of small

and efficient hardware-oriented block ciphers. Cryptographic Hardware and Embedded Systems-

CHES 2009 (pp. 272-288). Berlin: Springer.

Bogdanov, A., & Rechberger, C. (2010). A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis of the

Lightweight Block Cipher KTANTAN. Selected Areas in Cryptography. Waterloo, Canada.

Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann, A., Robshaw, M., . . . Vikkelsoe, C.

(2007). PRESENT: An Ultra-Lightweight Block Cipher. CHES. Vienna, Austria.

ECRYPT. (n.d.). eSTREAM: the ECRYPT Stream Cipher Project. (ECRYPT) Retrieved 2020, from

https://www.ecrypt.eu.org/stream/

Hell, M., Johansson, T., & Meier, W. (2007). Grain: a stream cipher for constrained environments.

International Journal of Wireless and Mobile Computing 2, 1, pp. 86-93.

Good, T., & Benaissa, M. (2008). Hardware performance of eStream phase-III stream cipher

candidates. State of the Art of Stream Ciphers Workshop, (pp. 163-173).

De Canniere, C., & Preneel, B. (2005). TRIVIUM specifications. eSTREAM, ECRYPT stream

Cipher Project.

Bernstein, D. (2008). The Salsa20 family of stream ciphers. Lecture Notes in Computer Science,

(pp. 84-97).

Bernstein, D. (2008). ChaCha, a variant of Salsa20. Workshop Record of SASC, 8, pp. 3-5.

Eisenbarth, T., & Kumar, S. (2007). A survey of lightweight-cryptography implementations. IEEE

Design & Test of Computers 24.6.

Y. Nir, Dell, A. Langley, Google. (2018). RFC 8439 - ChaCha20 and Poly1305 for IETF Protocols.

Internet Research Task Force (IRTF).

Biryukov, A. (2005). A New 128-bit Key Stream Cipher LEX. eSTREAM, ECRYPT Stream Cipher

Project.

Dunkelman, O., & Keller, N. (2013). Cryptanalysis of the Stream Cipher LEX. Designs, Codes and

Cryptography.

Federal Information Processing Standards Publication. (2015). FIPS PUB 180-4, Secure Hash

Standard (SHS). Gaithersburg, MD, USA.: National Institute of Standards and Technology.

International Organization for Standardization. (2018). ISO/IEC 10118-3:2018. Geneva,

Switzerland.

ALEXANDRA INSTITUTE

24 26

Bertoni, G., Daemen, J., Peeters, M., & Van Assche, G. (2009). Keccak sponge function family

main document. Submission to NIST.

Pessl, P., & Hutter, M. (2013). Pushing the limits of SHA-3 hardware implementations to fit on

RFID. International Workshop on Cryptographic Hardware and Embedded Systems. Berlin.

Gio, J., Peyrin, T., & Poschmann, A. (2011). The PHOTON Family of Lightweight Hash Functions.

Advances in Cryptology–CRYPTO 2011.

International Organization for Standardization. (2016). ISO/IEC 29192-5:2016 . Geneva,

Switzherland.

Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., & Verbauwhede, I. (2011).

SPONGENT: A lightweight hash function. Cryptographic Hardware and Embedded Systems–CHES

2011.

Aumasson, J.-P., Henzen, L., & Naya-Plasencia, M. (2010). Quark: A lightweight hash. CHES,

6225.

Krawczyk, H., Canetti, R., & Bellare, M. (1997). HMAC: Keyed-hashing for message authentication.

RFC 2104.

Song, J., Poovendran, R., Lee, J., & Iwata, T. (2006). The aes-cmac algorithm. RFC 4493.

McGrew, D., & Viega, J. (2004). The Galois/counter mode of operation (GCM). Submission to NIST

Modes of Operation Process 20.

Dworkin, M. J. (2007). Recommendation for block cipher modes of operation: Galois/Counter Mode

(GCM) and GMAC. Special Publication (NIST SP)-800-38D.

Wu, H., & Huang, T. (2016). The JAMBU Lightweight Authentication Encryption Mode (v2. 1).

Engels, D. W., Saarinen, M.-J., Schweitzer, P., & Smith, E. M. (2011). The Hummingbird-2

Lightweight Authenticated Encryption Algorithm. RFIDSec 11, (pp. 19-31).

Payrin, T., Sim, S. M., Wang, L., & Zhang, G. (2015). Cryptanalysis of JAMBU. International

Workshop on Fast Software Encryption. Berlin.

Zhang, K., Ding, L., & Guan, J. (2012). Cryptanalysis of Hummingbird-2. IACR Cryptology ePrint

Archive 2012.

Mouha, N. (2017, May). Chaskey. Retrieved January 2018, from https://mouha.be/chaskey/

Lan, J., Zhou, J., & Liu, X. (2016). An area-efficient implementation of a Message Authentication

Code (MAC) algorithm for cryptographic systems. Region 10 Conference (TENCON), (pp. 1977-

1979).

Mouha, N. (2015). a MAC Algorithm for Microcontrollers -- Status Update and Proposal of Chaskey-

12. IACR Cryptology ePrint Archive.

International Organization for Standardization. (2019). ISO/IEC 29192-6:2019. Geneva,

Switzerland.

Hein, D. M., Wolkerstorfer, J., & Felber, N. (2008). ECC Is Ready for RFID-A Proof in Silicon.

Selected Areas in Cryptography, 5381, pp. 401-413.

ALEXANDRA INSTITUTE

25 26

Kurahatti, N. G. (2018). Design and Implementation of ECC-Based RFID Tag for Wireless

Communications on FPGAs. International Proceedings on Advances in Soft Computing, Intelligent

Systems and Applications, (pp. 415-430). Singapore.

NTRUOpenSourceProject. (n.d.). Retrieved January 19, 2018, from

https://github.com/NTRUOpenSourceProject/ntru-crypto

Kamal, A. A., & Youssef, A. M. (2009). An FPGA implementation of the NTRUEncrypt

cryptosystem. Microelectronics (ICM), (pp. 209-212).

Albrecht, M. R., Bai, S., & Ducas, L. (2016). A subfield lattice attack on overstretched NTRU as-

sumptions - cryptanalysis of some FHE and graded encoding schemes. Advances in Cryptology -

CRYPTO 2016 - 36th Annual International Cryptology Conference. Santa Barbara, California.

Kirchner, P., & Fouque, P.-A. (2016). omparison between subfield and straightforward attacks on

NTRU. IACR Cryptology ePrint Archive, 2016:717.

Ducas, L., & Nguyen, P. Q. (2012). Learning a Zonotope and More: Cryptanalysis of NTRUSign

Countermeasures. Advances in Cryptology - {ASIACRYPT} 2012 - 18th International Conference

on the Theory and Application of Cryptology and Information Security. Beijing, China.

McEliece, R. J. (1978). A Public-Key Cryptosystem Based On Algebraic Coding Theory. Deep

Space Network Progress Report(44), 114-116.

Niederreiter, H. (1986). Knapsack type cryptosystems and algebraic coding theory. Problems of

Control and Information Theory. Problemy Upravlenija i Teorii Informacii(15), 159-166.

Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. 35th

Annual Symposium on Foundations of Computer Science. Santa Fe, New Mexico.

Misoczki, R., Tillich, J.-P., Sendrier, N., & Barreto, P. S. (2013). MDPC-McEliece: New McEliece

variants from moderate density parity-check codes. IEEE International Symposium on Information

Theory. Istanbul, Turkey.

Maurich, I. v., & Güneysu, T. (2014). Lightweight code-based cryptography: QC-MDPC McEliece

encryption on reconfigurable devices. Design, Automation & Test in Europe Conference &

Exhibition (DATE). Dresden, Germany.

Courtois, N., Finiasz, M., & Sendrier, N. (2001). How to achieve a McEliece-based digital signature

scheme. Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on the Theory

and Application of Cryptology and Information Security. Gold Coast, Australia.

26 26

	1 Introduction
	2 Glossary
	3 Cryptographic primitives
	3.1 Block ciphers
	3.1.1 AES
	3.1.2 Speck and Simon
	3.1.3 KATAN and KTANTAN
	3.1.4 PRESENT

	3.2 Streaming ciphers
	3.2.1 Grain
	3.2.2 Salsa20 / ChaCha
	3.2.3 LEX

	3.3 Hash functions
	3.3.1 SHA families
	3.3.2 PHOTON family
	3.3.3 SPONGENT family
	3.3.4 QUARK family

	3.4 MACs
	3.4.1 Authenticated Encryption Algorithms
	3.4.2 Chaskey

	3.5 Asymmetric ciphers
	3.5.1 ECC
	3.5.2 NTRU
	3.5.3 McEliece

	4 Summary
	5 Conclusion
	6 Bibliography

