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1 EXECUTIVE SUMMARY 

In recent years, many enterprises have become victims of cyberattacks due to software 

vulnerabilities exhibited in their deployed software. The latter has resulted in software 

security becoming a major concern of software development teams. Although the efforts 

of prioritizing software security have been increased, many developers are still lacking the 

appropriate knowledge and tools for effectively improving and maintaining the security of 

their software. 

Static analysis is a powerful technique which enables one to automatically reason about 

the absence of bugs within a piece of software without actually executing it. Developers 

can get deep insights regarding their code’s quality by simply setting up and running a 

static analysis tool for their project. Both the automation and static checks provided by 

those tools have made static analysis a key process within a secure software development 

life cycle. 

In this paper, we cover the fundamentals of static analysis and we discuss some of the 

state-of-the-art static analysis tools which can be used to find security vulnerabilities within 

the list of the top 25 most dangerous software weaknesses (CWE). We also present a 

case study of two security vulnerabilities found by us using static analysis tools in a major 

open-source IoT project, the WebThings Gateway by Mozilla. 

The paper is intended as a practical guide to static analysis tools for software developers 

and security experts who conduct code reviews or perform research on software security. 
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2 INTRODUCTION 

Every day more enterprises become victims of cyberattacks, leading to severe security 

breaches. The latest report by Forrester [1] shows that in 2020, application software is the 

prime asset targeted by adversaries in cyberattacks. In particular, 42% of the cyberattacks 

were carried out by exploiting a software vulnerability and 35% of it was through a web 

application. Along the same lines of research, in Veracode’s 2019 report [2], 85,000 

software applications have been under test for security vulnerabilities, where 10 million 

flaws have been discovered. 

Those results can be seen as a consequence of various factors, including: 

 The rapid growth of new software technologies within the spaces of Cloud 

Computing, the Internet of Things (IoT), Big Data, and Artificial Intelligence 

has created many successful businesses. However, many of those 

products come with insufficient security and low maturity. 

 The ease of extending an application’s functionality by using third-party 

open-source software. When this is done without care, it can introduce 

security holes within the application. An indicator of this is the fact that the 

number of vulnerabilities in open-source software in 2018 has seen an 

increase of almost 50% in 2019 [3]. 

 The requirements of interconnectivity through wireless links, as well as the 

enormous size in lines of code and integrated components highly increase 

the complexity of modern applications. Complexity can be the worst 

enemy of security, introducing vulnerabilities which are difficult to detect 

by software developers, but eventually they are discovered by skilled 

adversaries. 

 High competition as well as the market needs push for more software 

development, however, this leaves small time frames for software testing 

and security reviews for software development teams. 

 Software development teams lack proper security training, while on the 

other hand, adversaries and software exploitation frameworks are 

becoming more sophisticated. 

In order to produce sufficiently secure software, security needs to be pushed left in the 

software development life cycle. At first, software development teams should begin with 

establishing continuous processes on education regarding the best secure coding 
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practices and the latest attacks. Acquiring security education could enhance code reviews 

with security inspections and would enable developers to use automated tools for 

detecting software vulnerabilities in the early stages of software development. Automated 

tools do not only identify potential security holes left in the software, but they also improve 

the efficiency of code reviews. 

In this paper, we focus on a specific class of automated tools, that is the class of source 

code static analysis tools (SAT). SAT provide security insights about a piece of software 

by only examining its source code and without the need of executing it. We cover the 

theoretical fundamentals of static analysis, and we then present some of the state-of-the-

art SAT which can be used in order to detect high-severity vulnerabilities included in the 

2020 CWE (common weakness enumeration) list [4] of the 25 most dangerous software 

weaknesses.  

We also present a case study of two real-world vulnerabilities within the world of IoT, 

which we discovered using SAT. In particular, our case study is concerned with the 

WebThings gateway provided by Mozilla (https://iot.mozilla.org/), which allows one to 

control its smart house devices via a web application. The vulnerabilities discovered there 

allow an adversary to perform a phishing attack which would result in the gateway being 

compromised, which would give the adversary full control of the smart devices connected 

to the gateway. 

The rest of the paper is organized as follows: In Section 3, we present the main techniques 

used behind SAT, and in Section 4 we refer to some of the state-of-the-art SAT. In Section 

5, we present our case study, while in Section 6, we discuss complementary approaches 

to SAT. Finally, in Section 7, we give our conclusions. 

https://iot.mozilla.org/
https://iot.mozilla.org/
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3 SOURCE CODE STATIC 
ANALYSIS 

Source code static analysis offers automated techniques which can be used at compile-

time in order to efficiently approximate a program’s behaviours which rise dynamically 

during its execution. Those approximations are then used to tackle a great range of 

problems such as code optimization, dead code elimination, detection of program states 

which could lead to a program crash, detection of security vulnerabilities and more. 

One could now ask why static analysis can only approximate a program’s behaviours, and 

why it cannot always produce precise solutions to a given problem. The answer to this 

question lies within the fact that many of those problems are in general undecidable, i.e. 

it has been proven that there does not exist an algorithm which can provide a yes-no 

answer to the problem. The latter has been clearly proven in Rice’s Theorem [5] which 

informally states that ”Any non-trivial property of the behaviour of programs in a Turing-

complete language is undecidable”. 

 

 

Figure 1: The nature of approximation in static analysis. 

Over-Approximation 

Under-Approximation 

ProgramBehaviors 
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In particular, an approximation in static analysis can be either an over-approximation or 

an under-approximation. Results from an analysis which uses over-approximation contain 

at least all the possible program behaviours. However, behaviours that wouldn’t occur in 

a real execution of the program may also be contained in the results. Such artificial 

behaviours produced by an analysis are called false positives. To understand the latter 

consider a process whose source code contains the following snippet written in the C 

language 

... ; bytes = recv(s, buf, sizeof(buf) , 0); ... 

The process receives data from the network and stores it in the buffer buf. Most static 

analyses which perform an over-approximation to calculate the set of potential values that 

buf can hold will produce that data in it could be anything. However, in reality this process 

could have been deployed in an internal network where it only communicates with other 

processes which send data within a very restricted range. 

On the other hand, results produced by an analysis which performs an 

underapproximation contain behaviours which are certain to occur during a program’s 

execution. This approach, however, is expected to miss some of the program’s real 

behaviours. These concepts of approximation are illustrated in Figure 1. 

The techniques used to calculate those approximations vary and depend on the specifics 

of the problem solved by the static analysis. Some of the most common techniques1 are 

Abstract Interpretation [6], Symbolic Execution [7], Annotated Type Systems and 

Algorithms [8]. 

For many static analyses it is convenient to work on a model which represents a given 

program. The model is used to capture the program’s properties which are  relevant for 

the analysis, and thus simplifies the problem’s calculation but also boosts the calculation’s 

performance. Those models are often intermediate representations of the program’s 

source code which is performed by compilers or virtual machines. In particular, the main 

models utilized by a static analysis are graphs such as the abstract syntax tree (AST), the 

control flow graph (CFG) and the data flow graph (DFG). The AST captures the syntactic 

properties of the source-code, the CFG captures the order of execution of the program’s 

statements, while the DFG contains information regarding how information is transferred 

between the different objects and variables within a program. 

 

 

 

1 The details of those techniques are out of the scope of this paper. For further details we refer the reader to the 
appropriate references. 
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Figure 2: A high-level overview behind a static analysis process 

Fig. 2 depicts a high-level overview of the process followed by a static analysis. The 

process begins with a lexical analysis by passing the program’s source-code to the lexer. 

The lexer produces a sequence of tokens (i.e. a list of strings with well-defined meaning), 

which are fed to the parser. The parser constructs the parse tree that is a structural 

representation of the program. The latter usually contains a lot of detailed information 

regarding the program’s syntax. Since most of the time not all this information is relevant 

for the static analysis, the parse tree is passed to an AST constructor which calculates the 

program’s AST, filtering out redundant information.  

Next, depending on the purpose of the static analysis, we have the following three cases: 

(a) the AST is traversed and the final results are calculated (Fig. 2 middle), (b) the AST is 

used to calculate the DFG (Fig. 2 top) and the final results are produced by traversing it 

or (c) the AST is used to calculate the CFG (Fig. 2 bottom) and the analysis results are 

calculated after traversing it. Finally, it should be noted that in many static analyses, all of 

those graphs will be utilized in order for the analysis results to be calculated. 
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4 STATIC ANALYSIS TOOLS 

In this section, we refer to some of the state-of-the-art static analysis tools and their 

characteristics. All of the tools are easy to set up and use, and they come with clear 

documentation.  

Table 1 summarizes the tools including information regarding the languages and the 

analysis that they support. 

 

Tool Supported Languages Supported Analysis 

Infer Java, C,C++,Objective-C Data Flow, Control Flow 

SonarQube Java, Javascript, C#, 

TypeScript, Kotlin, 

Ruby, Go, Scala, Flex, 

Python, PHP, 

HTML, CSS, XML and 

VB.NET 

Data Flow, Control Flow, 

Syntactic 

JSlint Javascript Syntactic 

Flawfinder C,C++ Syntactic 

LGTM Java, Python, JavaScript, 

TypeScript, 

C#, Go, C and C++ 

Data Flow, Control Flow, 

Syntactic 

CodeSonar C,C++ Data Flow, Control Flow, 

Syntactic 

CPPCheck C,C++ Data Flow, Control Flow, 

Syntactic 

Clang Static Analyzer C,C++,Objective-C Data Flow, Control Flow, 

Syntactic 

Bandit Python Syntactic Analysis 

Pyre Python Data Flow, Control Flow 

Table 1: List of static analysis tools. 
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4.1 INFER 

Infer is an open-source tool written in OCAML. It was initially developed by the start-up 

Monoidics in 2009, which later in 2013 was acquired by Facebook. The tool can be used 

to detect security vulnerabilities in Java, C, C++ and Objective-C. The analysis behind 

Infer leverages sophisticated mathematical techniques such as separation logic [9, 10, 

11], bi-abduction [12] and abstract interpretation [6]. Some of the security bugs found by 

Infer are null pointer exceptions, resource leaks, annotation reachability, missing lock 

guards, concurrency race conditions and buffer overflows. The official website of the tool 

can be found at https://fbinfer.com/, while the paper [13] describes Facebook’s experience 

in integrating Infer into their software development cycle. 

4.2 SONARQUBE 

SonarQube is a tool which offers a wide range of analysis for most modern programming 

languages such as Java, Javascript, C#, TypeScript, Kotlin, Ruby, Go, Scala, Flex, 

Python, PHP, HTML, CSS, XML and VB.NET. It can detect various classes of security 

issues including the ones listed in the CWE top 25 [4]. It comes with a rich user interface 

that enables code reviews to be shared among developers and security analysts. In 

addition to that, it can be easily integrated with continuous integration engines such as 

Jenkins, Azure DevOps, TeamCity, Bamboo etc., while it also supports numerous source 

configuration management tools such as Git, Subversion, CVS, Mercurial e.t.c. The official 

website of the tool is at https://www.sonarqube.org/. 

4.3 JSLINT 

JSLint is a code quality tool for a subset of Javascript. It performs syntactic analysis of 

programs, and whenever it detects an issue it produces a description about it. Even 

though JSLint doesn’t support security checks, its code quality insights can be used to 

improve the structure and readability of a Javascript program, preparing it for a security 

code review. The official website of the tool is at https://jslint.com/. 

4.4 FLAWFINDER 

Flawfinder is a simple tool that detects security flaws in programs written in C and C++ by 

performing a syntactic analysis. In particular, the tool checks a program against a built-in 

database of C/C++ functions with well-known problems, such as buffer overflow risks 

(e.g., strcpy(), strcat(), gets(), sprintf(), and the scanf() family), format string problems 

([v][f]printf(), [v]snprintf(), and syslog()), race conditions (such as access(), chown(), 

chgrp(), chmod(), tmpfile(), tmpnam(), tempnam(), and mktemp()), potential shell 

https://fbinfer.com/
https://fbinfer.com/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://jslint.com/
https://jslint.com/
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metacharacter dangers (most of the exec() family, system(), popen()), and poor random 

number acquisition (such as random()).  

The official website of the tool is at https://dwheeler.com/flawfinder/. 

4.5 LGTM 

LGTM is a security analysis platform developed by Semmle. LGTM is free for open-source 

projects, it can be integrated with GitHub and BitBucket and it can analyze programs 

written in Java, Python, JavaScript, TypeScript, C#, Go, C and C++. The analyses used 

by LGTM are written as queries using the declarative language CodeQL and can be used 

to detect some of the most daunting security vulnerabilities. In addition to that, LGTM 

offers the option for developing customized queries. Finally, the tool offers a web-

application which gives quality metrics of a software project by comparing it to other open-

source projects which have been analyzed with LGTM. The official website of the tool is 

at https://semmle.com/. 

4.6 CODESONAR 

CodeSonar is a security analysis tool for C and C++ code which has been developed by 

Grammatech. The tool provides a user interface for reviewing the security issues detected 

in the code, while it also provides a module for path and call tree visualization which eases 

the task of determining if an issue is a false or true positive. Some of the security defects 

detected by the tool are buffer overflows, cast and conversion problems, command 

injections, concurrency errors, memory leaks, and null pointer dereferences. The official 

website of the tool is at https://www.grammatech.com/codesonar-cc. 

4.7 CPPCHECK 

Cppcheck is an open-source static analysis tool for C and C++ which has been designed 

such that it produces very few false positives. Some of the issues detected by it are 

division by zero, integer overflows, null pointer dereferences, buffer overflows, 

uninitialized variables, improper access control and input validation errors. Cppcheck is 

very easy to use and it can be found at http://cppcheck.sourceforge.net/. 

4.8 CLANG STATIC ANALYZER 

Clang static analyzer is an open-source static analysis tool for C, C++ and Objective-C 

code. The tool has been built on top of Clang and LLVM and consists of a set of C/C++ 

libraries which can be used as building blocks for building other static analysis tools. Some 

of the bugs detected by the tool are null pointer dereferences, use after free, division by 

https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://semmle.com/
https://semmle.com/
https://www.grammatech.com/codesonar-cc
https://www.grammatech.com/codesonar-cc
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
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zero, use of uninitialized variables and memory leaks. The results of the tool can be 

displayed on a web browser where detailed information regarding the detected bugs is 

presented. The official website of the tool is at https://clang-analyzer.llvm.org/. 

4.9 BANDIT 

Bandit is an open-source static analysis tool for detecting security holes in Python. The 

tool performs a syntactic analysis of a program and checks it against a database of well-

known security issues. Some of the security issues detected by Bandit are code injections, 

use of unsafe functions, hard-coded credentials, weak permissions on files and more. For 

each detected issue the tool provides a risk score which can be used for prioritizing its fix, 

while it also sometimes provides links with suggestions regarding how to fix the issue. The 

official website of the tool is at https://pypi.org/project/bandit/. 

4.10 DATA FLOW GRAPH (DFG) 

 

 

 

Figure 3: An example of a DFG used for taint analysis. 
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https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/
https://pypi.org/project/bandit/
https://pypi.org/project/bandit/
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4.11 PYRE 

Pyre is an open-source tool which performs type-checking and security analysis for 

programs written in Python. In particular, the security analysis is implemented by Pysa – 

a static analysis tool which can detect dangerous information flows within a program by 

performing taint analysis (to be explained in the next section). The official website of the 

tool is at https://pyre-check.org/. 

https://pyre-check.org/
https://pyre-check.org/
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5 FINDING REAL WORLD BUGS 
WITH SAT 

In this section, we present two security vulnerabilities which we found in Mozilla’s 

WebThings Gateway. The vulnerabilities were detected using the static analysis tool 

LGTM. LGTM allows one to perform taint analysis in order to detect dangerous information 

flows. We begin by describing how taint analysis works, and we then proceed with our 

vulnerability findings. 

5.1 TAINT ANALYSIS 

Taint analysis [14, 15, 16] tracks how information flows between the different variables 

and objects of a program. Intuitively, the aim of the analysis is to determine (a) if untrusted 

data can influence variables with high integrity or (b) if sensitive data can end up in public 

variables which can be observed by adversaries. Some of the bugs which can be detected 

by taint analysis are sql/nosql injections, command injections, exposure of sensitive 

information and cross-site scripting attacks. 

 

 

Figure 4:The architecture of the WebThings Gateway. 

The information flow tracking process of taint analysis defines the concepts of sinks and 

sources. Those concepts have different meaning depending on the desired security goal 

we would like to achieve. In the case of an integrity goal the sources describe the places 

where untrusted data can enter the program, e.g. user provided input, files, environment 
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variables, HTTP request parameters, network data etc., while sinks describe places where 

only trusted data should end up, e.g. input to OS commands or database queries. On the 

other hand, in the case of confidentiality sources describe the places where sensitive data 

originates, e.g. password files, credentials, cryptographic keys etc., while sinks describe 

the places and variables in code which can be publicly observed, e.g. files with weak 

permissions, standard output or data sent through HTTP. 

Data originated from sources becomes tainted, while, whenever tainted data is used to 

define the value of some other variable, this variable becomes tainted as well. A violation 

is reported whenever tainted data enters a sink. In particular, the analysis tracks how 

tainted data is propagated using a DFG. To understand this through an example consider 

the program depicted in Figure 3. The program receives the input y and uses it to define 

the local variable x.  

Next, if a certain condition b is fulfilled, x defines the value of z and the program returns, 

otherwise, the program returns x. On right side of Figure 3 we can see the program’s DFG 

which consists of nodes with variables. Whenever information flows between variables, a 

directed edge is connecting the appropriate nodes. For instance, there is an edge from 

the expression node y to the expression node x due to the assignment x = y. Similarly, 

there is an edge connecting x and z because of the assignment z = x. Now if y is tainted 

data, then because of the DFG both x and z will be tainted. In addition to that, if now z is a 

sink then the analysis will report a violation. 

Let’s now see how we utilized taint analysis to find two real-world security vulnerabilities. 

5.2 WEBTHINGS GATEWAY 

We performed a security review of the WebThings IoT Gateway developed by Mozilla. We 

found two vulnerabilities which can be exploited by an adversary to (a) redirect a victim to 

a malicious website, steal the victim’s credentials and (b) steal the victim’s jason web 

token (jwt) and authenticate to the gateway. 

The first vulnerability is an open redirect (cwe-601), while the second one is a cross-site 

scripting (cwe-79). Both of the vulnerabilities have now been patched, while CVE-2020–

6803 (https://nvd.nist.gov/vuln/detail/CVE-2020-6803) has been assigned to the first 

vulnerability and CVE-2020–6804 (https://nvd. nist.gov/vuln/detail/CVE-2020-6804) to the 

second one. 

Before we begin describing the details of discovering and exploiting the vulnerabilities, we 

will briefly describe Mozilla’s IoT gateway. 

https://nvd.nist.gov/vuln/detail/CVE-2020-6803
https://nvd.nist.gov/vuln/detail/CVE-2020-6803
https://nvd.nist.gov/vuln/detail/CVE-2020-6804
https://nvd.nist.gov/vuln/detail/CVE-2020-6804
https://nvd.nist.gov/vuln/detail/CVE-2020-6804
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 ARCHITECTURE 

Mozilla is working on a project called WebThings. WebThings is an open-source 

implementation of the Web of Things, whose idea is to provide a generic software design 

framework which would allow IoT devices to be connected and discovered through the 

World Wide Web. In other words, WebThings is the IoT’s application layer to the network 

layer providing flexibility in creating and connecting IoT devices which run on different 

platforms. 

For the purpose of the WebThings project, Mozilla has implemented a gateway which 

allows you to connect and control your smart home devices through a web interface. The 

architecture2 of the gateway is depicted in Figure 4. The gateway (Pi Gateway in Fig. 4.) 

can run either on a raspberry Pi or a Linux machine, while your smart devices (Smart 

Home in Fig. 4) can be connected to the gateway and exchange information through your 

local network. You can control your devices through a web-interface using a web-browser. 

In particular, the web-interface can either be accessed locally (Web-App left in Fig. 4.) or 

through the internet using HTTPS (Web-App right in Fig. 4) by obtaining a subdomain of 

mozilla-iot.org. The latter would require your gateway to be connected to your home router 

(Router in Fig. 4). 

To authenticate to the gateway you first need to visit the gateway’s login url – for instance, 

in my case that would be https://panava.mozilla-iot.org/ login where panava.mozilla-iot.org 

is my Mozilla’s subdomain. Next, you need to provide your email and password, and upon 

successful authentication, you receive a jason web token (jwt) which can be then used to 

authenticate to the gateway in future requests. The code of the login script can be found 

in Figure 5. 

 

 

 

2 Note that the latest architecture of the gateway may differ from the one described here. 

https://panava.mozilla-iot.org/login
https://panava.mozilla-iot.org/login
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Figure 5:The source code for the gateway’s login page. 

The code is relatively simple — it creates a login form which asks you for an email and a 

password. Once you fill out the form and press the submit button an authentication request 

to an API is made at line 26. If the authentication succeeds something interesting 

happens. In particular, at lines 28–29 the script is checking if there exists a query 

parameter with name url in the login url. In case it finds it you will be redirected to the 

value of the url parameter.  
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For instance if you visit https://panava.mozilla-iot.org/login?url=https://www.google.com 

then after a successful authentication you will be redirected to Google’s search engine. 

 VULNERABILITIES IN MOZILLA’S IOT GATEWAY LOGIN PAGE 

Both the open redirect and the cross-site scripting vulnerabilities are due to the url 

redirection functionality of the login script. Let’s now see how we detected the 

vulnerabilities and how one can exploit them. 

Open Redirect This vulnerability allows an adversary to redirect a victim to a malicious 

website and then steal the victim’s credentials. 

To exploit the vulnerability an adversary needs to know the subdomain of the victim, e.g. 

this would be panava.mozilla-iot.org in my case, and then it proceeds with the following 

steps: 

 The adversary creates a webpage which looks identical to the login page 

provided by Mozilla’s gateway, e.g. : http://www.evil.com/login. 

 The adversary uses a phishing email and convinces the victim to visit the 

link https://panava.mozilla-iot.org/login?url=http://www.evil.com/login. 

 The victim visits the link and submits its credentials. If the authentication 

is successful, the victim will be redirected to http://www.evil.com/login. 

 The victim resubmits its credentials but now to the malicious website. 

 The adversary has now the victim’s credentials and can authenticate to 

the gateway. 

We used LGTM’s taint analysis to detect this vulnerability. The tool immediately detected 

the vulnerability in less than 1 minute. The way the tool found the vulnerability is by 

labeling the windows.location.search variable in line 28 as source, and the 

windows.location.href variable in line 36 as sink. This is because the value of 

windows.location.search can be crafted by an adversary. In the DFG we will have the 

following information flows windows.location.search→ search → match → url → 

windows.location.href, and thus tainted data flows into a sink. 

Cross-Site Scripting This vulnerability allows an adversary to steal the victim’s jwt and 

consequently authenticate to the gateway and control the victim’s smart devices. 

This vulnerability was not flagged by the tool directly, however the taint analysis results 

from the open-redirect vulnerability was a good indicator to proceed with further 

investigation. First ,we need to know that jason web tokens stored in the browsers local 

storage can be accessed through Javascript. In particular, for the gateway, the jwt can be 

accessed with the following call localStorage.getItem(‘jwt’). Since we now know that we 

can access the token, let’s see how an adversary can exploit this. 

http://www.evil.com/login
https://panava.mozilla-iot.org/login?url=http://www.evil.com/login
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As with the exploitation of the open redirect vulnerability, here the adversary needs to 

know the subdomain of the victim, e.g. the domain panava.mozillaiot.org. Next, the 

adversary proceeds as: 

 The adversary sets up a server at http://www.evil.com which will be used 

to capture the jwt of the victim. 

 The adversary uses a phishing email and convinces the victim to visit the 

link https://panava.mozilla-iot.org/login?url=javascript:var i = new Image; 

i.src = “http://www.evil.com/?” +localStorage.getItem(’jwt’). 

 The victim visits the link and submits its credentials. 

 If the authentication is successful, the victim’s jwt will be sent to the 

malicious website. The adversary can now use the jwt to connect to the 

gateway. 

We just showed how critical vulnerabilities can be found by SAT, without a lot of effort. 

Thus, we highly encourage developers to get more familiar with SAT and taint analysis. 

 

 

Figure 6: Secure Software Development Lifecycle 

 



ALEXANDRA INSTITUTE 

21   27 

6 COMPLEMENTARY 
APPROACHES 

Static analysis offers efficient and automatic techniques for detecting some of the most 

severe security vulnerabilities. However, static analysis is not a silver bullet solution to 

software security. Instead it should be seen as a necessary process within a secure 

software development lifecycle (SDLC). 

SDLC is a framework of processes that need to be followed in order to build, monitor and 

maintain secure software. SDLC begins by establishing and documenting the security and 

privacy requirements for the software. Next, the important assets involved in the software 

(e.g. passwords, databases, cryptographic keys etc.) and the potential threats to them 

should be identified and the likelihood of a threat compromising an asset should be 

calculated. The latter is usually referred to as Risk Analysis. 

Once the first components of the software are developed, static analysis tools can be used 

to detect early security defects. In addition to this, the components should be reviewed 

through manual core reviews. If the components use third-party software, then a 

vulnerability assessment should be performed in order to detect any known published 

vulnerabilities. If a binary software component is used, which is not possible to obtain its 

source-code, then static analysis for binaries should be used to scan it. 

Once the software reaches a mature version, dynamic analysis can take place. Dynamic 

analysis includes but is not limited to (an) internal or external penetration testing which 

aims to simulate real attack scenarios against the software (b) fuzz testing [17, 18] that is 

an automated technique which can efficiently test the software’s interfaces and APIs with 

random input and detect security bugs in it (c) address sanitizers [18] which can be used 

in C and C++ code in order to instrument the code such that useful information would be 

given to the developer in case of a crash or an error, and finally, (d) property based testing 

[19] which can be used to formally describe the desired security properties and then check 

the software against them using random input. 

At this stage, the software should be ready to be deployed and thus monitoring 

mechanisms such as network and software logs should be used in order to detect unusual 

behaviours. Monitoring mechanisms also include bug bounty programs which allow 

external researchers to detect novel security vulnerabilities in the software. Finally, we 

have the implementation of a well-documented response plan that addresses how to 

prioritize and patch new vulnerabilities. 
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The SDLC framework is depicted in Figure 6. The number of $ in each of the different 

SDLC processes is an intuitive illustration of how much a bug fix would cost at this 

particular stage of the SDLC. All the processes involved in SDLC can complement the 

checks of SAT and increase the overall security of the software. 
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7 CONCLUSION 

In order to tackle the latest increasing number of cyberattacks on software, continuous 

and thorough security reviews using manual and automated techniques are needed. 

Static analysis provides powerful automatic tools that allow one to detect severe security 

vulnerabilities in software. Although the first static analysis tools were only able to analyze 

toy programs, nowadays, both industry and academia offer a wide variety of mature tools 

that can analyze thousands of lines of software written in any modern programming 

language. However, those tools still remain unknown to developers and they are not 

widely adopted. 

In this paper, we have presented an introductory guide to the fundamentals of static 

analysis. We discussed commercial and open-source static analysis tools and we also 

presented how we used static analysis to detect two security vulnerabilities in the 

WebThings gateway developed by Mozilla. Even though we haven’t included instructions 

on how to setup and use the tools, we believe that all of them are very intuitive and well 

documented. 
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